
Probabilistic Fusion of Persons’ Body Features: the Mr. Potato
Algorithm

Séverin Lemaignan
severin.lemaignan@pal-robotics.com

PAL Robotics
Barcelona, Spain

Lorenzo Ferrini
lorenzo.ferrini@pal-robotics.com

PAL Robotics
Barcelona, Spain

ABSTRACT
Multi-modal social perception usually involves several independent
software modules, detecting for instance faces, voices, body skele-
tons.Those features need then to be matched to each other, to create
a complete model of a person. While the problem is simple in one-
to-one interactions, multi-party interactions require to optimize a
probabilistic graph in order to find the most likely persons–features
associations, while ensuring practical properties like stability over
time. This paper presents an open-source algorithm that searches
over all possible partitions of the relationship graph to identify the
best partition. We playfully call this algorithm Mr. Potato, after the
eponymous children’ game.

CCS CONCEPTS
• Computer systems organization→ Robotics.

KEYWORDS
Social representation, human-robot interaction
ACM Reference Format:
Séverin Lemaignan and Lorenzo Ferrini. 2024. Probabilistic Fusion of Per-
sons’ Body Features: the Mr. Potato Algorithm. In Proceedings of the 2024
ACM/IEEE International Conference on Human-Robot Interaction (HRI ’24),
March 11–14, 2024, Boulder, CO, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3610977.3637479

1 INTRODUCTION
Robots deployed in social environments often perform multi-modal
social perception. Multiple software module run in parallel and
specialize in the detection of specific social features: faces, bodies
(e.g., 3D skeletons), voices, etc.

Often, however, these features have to be combined and asso-
ciated to form complete persons. The association might be direct
(e.g., a facial recognition software module might directly associate
a face to a specific person), or indirect (one might associate a body
to a face based on the overlapping regions of interest in the source
image, and transitively associate the body to a person).

The interplay between these features (in this paper, we primarily
consider faces, bodies and voices) and their associated persons, has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HRI ’24, March 11–14, 2024, Boulder, CO, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0322-5/24/03…$15.00
https://doi.org/10.1145/3610977.3637479

been recently formalised in the ROS4HRI standard [1], published
as the ROS REP-1551.

The ROS4HRI standard suggests to refer to features and persons
through unique identifiers (that might be long-lived in the case of
persons’ identifiers – like the person’s name –, or short-lived in the
case of the face, body, voice identifiers, as, without tracking, the
detectors for those features might have to assign new IDs every
time the feature is (re-)detected).

The ROS4HRI standard also formalises a mechanism to broad-
cast possible associations between features and/or persons, with
their corresponding likelihoods. For instance, a facial recognition
node might broadcast a message like [{john, face_432, 0.8}, {jane,
face_432, 0.2}] to indicate that a detected face has 80% chance of
being John, and 20% chance of being Jane.

Over time, the possible associations published by the social per-
ception modules of the robot span a probabilistic graph of relation-
ships between social features and persons. The challenge is then to
compute the most likely person–features associations, also account-
ing for the fact that the persons ‘owning’ the feature might yet be
unknown (for instance, a module detects a face, but the person is
not yet recognised).

This paper presents an algorithm (and its implementation) that
compute such probabilistic associations. It is deployed on our social
robots, and used on a daily basis to combine in real-time the various
social features of humans in the robot’ vicinity.

We playfully call this algorithm the ‘Mr Potato’ algorithm after
the eponymous children’ game where players have to put together
a little potato-like character from all its body parts.

2 MOTIVATING EXAMPLE
Diagram 1 represents a possible persons–features graph, built over
time be receiving probabilistic ‘matches’ between features pairs, or
features and persons.

In this particular case, likelihoods of association between faces
and persons are generated by a face identification node (like
ROS4HRI’s hri_face_detect2; associations between faces and
bodies are computed by a face-body matching algorithm (like
ROS4HRI’s hri_face_body_matcher, that relies on overlapping
regions of interest); associations between bodies and faces could
be computed with a body recogniser (using, for instance, clothing
colour matching); and voice–body association could be computed
by yet another module, matching detected bodies with voices’ di-
rection of arrival.

1https://www.ros.org/reps/rep-0155.html
2https://github.com/ros4hri/hri_face_detect

https://orcid.org/0000-0002-3391-8876
https://doi.org/10.1145/3610977.3637479
https://doi.org/10.1145/3610977.3637479
https://www.ros.org/reps/rep-0155.html
https://github.com/ros4hri/hri_face_detect

HRI ’24, March 11–14, 2024, Boulder, CO, USA Séverin Lemaignan & Lorenzo Ferrini

Figure 1: Example of relations graph generated by the robot’s perception modules. Numerical values are likelihoods that two
features are indeed belonging to the same person.

Note that the values used in Figure 1 were not actually measured;
they were chosen for illustrative purpose, also stressing some edge
cases of the algorithm.

Looking at this diagram, it seems clear that person2 should
be associated to face1 and person1 to face2. The associations
of bodies to persons is less obvious: body3 could be associated to
person3 (direct relation, likelihoodL = 0.7), but body2 seems to be
likely to ‘belong’ to face1 (L = 0.8): if face1 is already associated
to person2, then maybe should body2 also be associated to the
same person? Similar ambiguities can be found for person1: is it
more likely to be associated to body2 or body1 (via face2)?

A first naive approach to the problem involves looking for the
most likely path between a person and each of its features (i.e.
pathfinding with weights = 1 - likelihood). However, this approach
does not workwell in practice, due to some of the unique constraints
of the problem (like the fact that an association may contain at most
exactly one feature of each type).

Our algorithm instead search all possible partitions of the initial
graph, and select the one that minimizes the number of associa-
tions, while maximizing affinity, i.e. the sum of likelihoods of each
associations. In practice, our algorithm yields the three associa-
tions presented in Figure 2 (assuming in this example a likelihood
threshold of 0.4).

3 DEFINITIONS
DEFINITION 1: a feature is a face, body, or voice. Accordingly,
the feature type is one of face, body or voice. (Note: these 3 features
happen to be ones currently specified in the ROS4HRI specification.
Additional features could be added – nothing in the algorithm is
specific or limited to these three ones.)
DEFINITION 2: a node is either a feature or a person, and accord-
ingly node types are one of face, body, voice or person.

DEFINITION 3: nodes (e.g. either persons or features) might be
connected to each other if a likelihood of association has been pub-
lished between them (specified in ROS4HRI as a message over the
/humans/candidate_matches topic). Together they span a graph
called the persons–features graph.
DEFINITION 4: A permissible path between two nodes is a path
that does not contain more than one node of each type (including
the start and end nodes). The full path likelihood is computed as
the product of likelihoods along the path.

(a) Group 1

(b) Group 2

(c) Group 3

Figure 2: Partition of the graph in Fig. 1 that maximise over-
all likelihood. One anonymous person had to be created in
Group 3 for the features body1 and voice2, as they would
otherwise be dangling. Note that the person1–voice1 edge
in Group 2 does not exist in the original data: it is a com-
puted edge, used to ensure stability if body2 is not detected
anymore and disappear.

DEFINITION 5: A node may be associated to another one if:
• it is not already associated to a node of the same type;
• there exists a permissible path between the two nodes;
• the likelihood of the resulting path is above the likelihood
threshold.

DEFINITION 6: an association is a connected set of nodes, such
that each node in the set is associated to at least one other node. As
such, association are connected subgraphs of the original persons-
features graph.
DEFINITION 7 an association’s affinity is the sum of all the like-
lihoods on the minimum spanning tree (computed using weights
equal to (1 - likelihood)) of the association’s graph.

4 ALGORITHM REQUIREMENTS
R1: maximum likelihood: associations between persons and
their features must be chosen so that theymaximize the total affinity
of all associations.

Probabilistic Fusion of Persons’ Body Features: the Mr. Potato Algorithm HRI ’24, March 11–14, 2024, Boulder, CO, USA

R2: existence of persons: at anytime, every feature must be as-
sociated to exactly one person (anonymous or not).
R3: anonymous persons: as a consequence of R2, features that
are not associated to a person must be associated to temporary
‘anonymous’ persons. This should still respect the requirements
of DEFINITION 5: if two features are associated (e.g. a face and a
body), they must be associated to the same anonymous person.
R4: stability: associations with indirect paths (e.g. A associated
to C because A connected to B and B connected to C) should be
maintained in case of the path is broken (e.g. B disappears) if and
only if the likelihood of the association between the two nodes is
superior to the likelihood threshold when the path is broken. In that
case, a new direct association must be created and the likelihood
of that association will remain constant until the association is
removed (because one of the two nodes disappeared).

5 ALGORITHM
5.1 TheMr. Potato algorithm
The overall aim of the algorithm is to find, for each person in the
scene, its most likely association. For a given persons-features graph
� (+ , �) with + the nodes (persons or features), and � the relations
between the nodes, with the likelihoods L4 , we want to optimize
for the overall likelihood of each of the persons’ associations.

ALGORITHM 1: computeAssociations;� (+ , �) denotes a persons–
features graph (with nodes+ and edges � with likelihood L4); ? ∈ P�
denotes a partition of such a graph.
input :� (+ , �) ; likelihood threshold C
output :a partition ? of� (+ , �)
// prune edges whose likelihood is below C

foreach 4 ∈ � do
if L4 < C then

remove(� , 4)

// remove all existing anonymous persons

foreach E ∈ + do
if E is anonymous person then

remove(� , E)
?5 8=0; = ∅
foreach�2 in connectedComponents(�) do
P ← getPartitions(�2)

// only keep the most compact partitions; ie

partitions with minimum of subgraphs

P2><?02C ← {?̃ ∈ P; ;4= (?̃) =<8=?∈P (;4= (?)) }

// select partition with highest affinity

?14BC = 0A6<0G?∈P2><?02C (partitionAffinity(?))
foreach�14BC ∈ ?14BC do

// if no person in this subgraph, insert a new

anonymous person, with likelihood = C

addAnonymousPersons(�14BC)
fullyConnectPersons (�14BC)
?5 8=0; = ?5 8=0; ∪ {�14BC }

return ?5 8=0;

To this end, our algorithm takes the following steps:
(1) Compute all possible partitions of the graph � , with the

constraints that (1) each subgraph can not contain more

than one node of each type (e.g., two faces, or two bodies
is not permissible); (2) the subgraphs are connected. Each
subgraph is a candidate person association;

(2) Compute how ‘good’ each partition is, and select the best one.
How ‘good’ is measured by (1) having a minimal number of
subgraphs; (2) having the highest total affinity (computed as
the sum of affinities of each subgraph in the partition);

(3) Add anonymous persons to subgraphs that do not already
have a person (because, for instance, a face is detected, but
not yet recognised);

(4) If necessary, create computed edges between the person and
each of its features (so that the association is stable in case
of one feature disappearing).

Algorithm 1 implements the whole process, with Algorithm 2
specifically implementing Step 1; Algorithm 3 implementing Step
2; and Algorithm 4 implementing Step 4.

ALGORITHM 2: getPartitions (same notations as Alg. 1)

input :� (+ , �) ; likelihood threshold C
output :a set of partitions

// Recursively computes and returns a set of partitions

that have at most one node of each type

func buildPartitions V
head = V[0]
if len(V) = 1 then

return {{{ℎ403 }}} // one partition with only one

graph containing only one node

P = buildPartitions(V[1:…])
P′ = ∅

foreach ? ∈ P do
foreach� ∈ ? do

if type(head) ∉ � then
?′ = {�′;�′ ∈ ? ;�′ ≠ � } ∪ {� ∪ {head}}
P′ = P′ ∪ {?′ }

P′ = P′ ∪ {? ∪ {{head}}}
return P′

func getPartitions G(V,E)
P ← buildPartitions(+)

// only keep partitions where each sub-graph is fully

connected

P2 = ∅
foreach ? ∈ P do

foreach� ∈ ? do
if not isFullyConnected(�) then

continue with next ?
P2 = P2

⋃
?

return P2

ALGORITHM 3: partitionAffinity (same notations as Alg. 1)

affinity = 0

foreach� in partition do
T ← minimumSpanningTree(�, F486ℎCB = (L ↦→ 1 − L))
affinity +=

∑
4∈T
L4

return affinity

HRI ’24, March 11–14, 2024, Boulder, CO, USA Séverin Lemaignan & Lorenzo Ferrini

ALGORITHM 4: fullyConnectPersons (same notations as Alg. 1)

input :� (+ , �) , containing at most one node per node type
input : likelihood threshold C
output :� (+ , �) with fully connected persons

E? = E ∈ + , type(E) = person
�prev_computed = ∅
�newly_computed = ∅
foreach 4? ∈ �; E? connected to 4? do

if isComputedEdge(e) then
�prev_computed = �prev_computed ∪ {4? }
remove(G, 4?)

foreach E ∈ + , E ≠ E? do
if not E directly connected to E? then
LE,E? = shortestPath(�, E? , E,weights = (L ↦→ ;>6 (1L)))
if LE,E? > C then

4E,E? = {E → E? ; L = LE,E? ; 8B�><?DC43 = CAD4 }
�newly_computed = �newly_computed ∪ {4E,E? }
add(� , 4E,E?)

foreach 4prev ∈ �prev_computed \ �newly_computed do
add(� , 4prev)

return�

5.2 Step-by-step example
We can apply Algorithm 1 to the graph pictured in Diagram 1, using
a likelihood threshold of C = 0.4.

We first prune the two relations whose likelihood L is below
the threshold (45 0241,?4AB>=1 and 45 0241,1>3~1).

Then, getPartitions (Alg. 2) generates 352 possible partitions
from the remaining graph, which reduces to |P2><?02C | = 6 parti-
tions of minimal size = = 3 subgraphs.

These 6 partitions have affinities ranging from 5.01 to 4.7, the
best partition ?14BC being pictured in Figure 2. The affinity value of
5.01 can easily be computed from Figure 2 by summing likelihoods
across all associations, omitting both the link between person1 and
voice1 in Group 2 (as this is a computed edge that does not yet
exist in the graph at this point in the algorithm); and the links to
anonymous_person1 in Group 3, as anonymous persons are simi-
larly added at the later point in the algorithm.

The next step in the algorithm is to create and add anonymous
persons for associations that lacks a person, like Group 3 in Figure 2.
In the actual implementation (see below), the ID of the anonymous
person is generated from a hash of the connected features’ IDs,
ensuring the same anonymous person ID will be reused if the
features of the association are the same.

Next, we compute direct edges between persons and each of their
features that are not already directly connected. This is visible for
instance in Group 2: a new link person1–voice1 is created, with
likelihoodLperson1, voice1 = Lperson1, body2×Lbody2, voice2 = 0.81×
0.5 = 0.405, corresponding to the likelihood along the maximum-
likelihood path (i.e. the shortest path computed with weights =
;>6(1/L)) between the person and the feature. If body2 is removed
from the graph (for instance, the body is occluded, and not detected
anymore), adding this computed edge ensure that the association
between the person and the voice is maintained. Note that if the
computed likelihood would have been below the threshold, we
would not have added this new edge.

The algorithm concludes by returning the three computed asso-
ciations (Figure 2) that maximize the overall affinity.

5.3 Complexity
We note = the number of nodes in the largest connected compo-
nent of the persons–features graph. The time complexity of the
computeAssociations algorithm is dominated by the recursive
getPartitions algorithm. The complexity of getPartitions can
be computed to be $ (==). Indeed, one association is made of, at
most, one node of each type. As such, there is ∝ =4 ways of creating
a valid association. A partition is made of at most = associations (in
the worst case of associations with a single node in each of them).
Therefore, to build a partition, we need to pick at most = elements
amongst =4. As such, the complexity of finding all permissible par-
titions is $ (� (=4, =)) = $ ((=4)=) = $ (==).

While the complexity exponentially increases with the number
of nodes, in practice, = tends to remain small (10), as it is limited
by the number of people that can be seen by the robot’s camera at
a given time.

6 IMPLEMENTATION
We provide a C++ implementation of the algorithm as an open-
source ROS node (supports both ROS 1 and ROS 2; source code:
https://github.com/ros4hri/hri_person_manager).

The node implemented the ROS4HRI REP-155 standard, and,
as such, listens for likelihoods of associations between persons
and features on the /humans/candidate_matches topic. The
likelihood threshold can be configured via the ROS parameter
/humans/match_threshold.

Our implementation relies on the boost::graph library to ef-
ficiently represent the persons-features graph. Connected compo-
nents are computed using boost’s connected_components algo-
rithm that uses a Depth-First-Search approach; likewise, minimum
spanning trees are calculated using the boost implementation of
the Kruskal’s algorithm; and shortest paths between nodes are
computed using boost implementation of the Dijkstra algorithm.

The current implementation is not multi-threaded; it runs on
the graph pictured in Figure 1 in about 55ms on an Intel i7 11th
CPU. As expected, the execution time is almost entirely dominated
by the generation of partitions (getPartitions), which is itself
largely dominated by memory allocation calls. As such, further
optimizations are possible.

7 CONCLUSION
We present in this paper a novel algorithm to perform probabilistic
fusion of human ‘features’ (like faces, bodies, voices) into complete
models of persons. We also introduce an open-source C++ imple-
mentation of the algorithm, fully compatible with the ROS4HRI
REP-155 standard. This implementation is deployed and routinely
used on our social robots.

ACKNOWLEDGMENTS
This work has been funded by the EU H2020 SPRING project (grant
agreement No.871245). Additional funding has been received from
the EU H2020 ACCIO TecnioSpring INDUSTRY (grant agreement
no. 801342, TALBOT project).

https://github.com/ros4hri/hri_person_manager

Probabilistic Fusion of Persons’ Body Features: the Mr. Potato Algorithm HRI ’24, March 11–14, 2024, Boulder, CO, USA

REFERENCES
[1] Y. Mohamed and S. Lemaignan. 2021. ROS for Human-Robot Interaction. In

Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems. https://doi.org/10.1109/IROS51168.2021.9636816

https://doi.org/10.1109/IROS51168.2021.9636816

	Abstract
	1 Introduction
	2 Motivating example
	3 Definitions
	4 Algorithm requirements
	5 Algorithm
	5.1 The Mr. Potato algorithm
	5.2 Step-by-step example
	5.3 Complexity

	6 Implementation
	7 Conclusion
	Acknowledgments
	References

