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Abstract. The semantic information available to a robot enhances its
understanding of the world and allows it to adapt its behaviour accord-
ingly. This information can be spatially-grounded, meaning it is asso-
ciated with specific areas of the environment. For a robot to use this
information effectively during its tasks, it is crucial to provide an ef-
ficient system for storing and retrieving spatially-grounded semantics.
In this paper, we present reMap, a novel framework for the efficient
representation, storage, and retrieval of spatially-grounded semantics.
In reMap, we formally introduce Representation Maps (RMs), three-
dimensional functions that each represent a different type of semantic in-
formation in space. These structures can be combined through operators
to extract additional spatially grounded semantic information. reMap in-
cludes a SPARQL-based language that serves as a programmatic inter-
face for retrieving spatially-grounded semantics stored in RMs. We pro-
vide an open-source ROS-based implementation of reMap, enabling effi-
cient three-dimensional information storage and processing using dense
voxel maps based on the high-performance OpenVDB format. Finally, we
describe the execution of the framework over real-world data recorded in
a semantically rich real-world environment.

Keywords: Semantic mapping, Interactive robots, Human-Robot In-
teraction

1 Introduction

Semantic information is crucial in allowing robots to understand the world
around them [10]. Robots can use semantic information for a vast range of tasks,
i.e, for all those where understanding the meaning behind the components in-
volved is the key for a successful execution [4, 15].

In social robotics, semantic information allows robots to understand social
signals and adapt their behaviour accordingly. In fact, advancements in machine
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Fig. 1: The reMap spatio-semantic framework combines spatially-grounded se-
mantic sources into a dense voxel map. In this example, three sources are com-
bined: the human field-of-view map, the object map, and the personal space
map. The resulting map can be queried using a SPARQL-based language.

learning have enabled robots to real-time estimate aspects such as human emo-
tions [26], group dynamics [13], and engagement [25]. The semantics extracted
can be used to manage the various aspects in the human-robot interaction spec-
trum, from maintaining appropriate personal space [9] to conversation manage-
ment [12].

A part of these semantic data is linked to specific locations in space, creating
a direct connection between the information and a volume. However, the spa-
tial anchoring of these data is not necessarily fixed; while some elements may
have stable characteristics in the environment, others undergo frequent changes
in position, shape, and value. These dynamic attributes present challenges for
representation due to the intricate and evolving nature of the data, the need for
frequent updates requiring significant computational resources, and its inherently
unstructured nature that makes it difficult to create concise symbolic represen-
tations. Tackling these challenges requires a specialised framework that provides
efficient and standardised data structures designed to encode spatially anchored
semantic information, along with APIs optimised for rapid access and modifica-
tion of values. Despite the enhanced semantic capabilities of robots enabled by
advances in areas such as Deep Learning, current frameworks lack comprehensive
support for efficient representation of spatially-grounded semantic data.

Moreover, the semantic information available to interactive robots is rarely
standalone. It often requires processing and integration, and the robot reasoning
over it to derive further semantic insights. Therefore, a complete framework
for spatially grounded semantic information should also include structures that
facilitate semantic reasoning on the data.

This paper seeks to tackle these aspects by introducing reMap, a compre-
hensive open-source framework for spatially anchored semantic information in
robotics, incorporating structures that support semantic reasoning and flexible
representation of dynamic semantic data.
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Our contributions include:

1. A framework based on 3D voxel maps (Fig. 1), to represent and efficiently
retrieve semantic information from unstructured – yet spatially-grounded –
data for use in robotic tasks;

2. The definition of operators for combining the stored maps and extracting
new spatially-grounded semantic information from them.

3. a proof-of-concept SPARQL-like query language for semantic information
retrieval from maps;

4. an open-source ROS-based implementation of the presented framework4.

2 Related Work

Anchoring semantic information in the spatial environment is central to many
robotics tasks, and remains an on-going challenge [10, 15]. Various strategies
have been explored, often tailored to specific application domains. For instance,
in navigation, numerous solutions have been proposed to effectively correlate se-
mantic concepts with physical space [4]. In [8], authors define a multi-hierarchical
structure to link semantic concepts with navigation maps, introducing a query-
ing language for information retrieval pertinent to navigation tasks. The authors
in [3] focus on the real-time grounding of symbolic information onto 2D maps for
life-long information acquisition and representation. In [23], the authors pursue
an ontology-based approach [27], focusing on the representation and acquisi-
tion of comprehensive semantic maps, with the goal of facilitating prolog-based
querying systems for information retrieval in navigation tasks. In [6], the authors
propose a framework for managing semantic maps, employing a client-server ar-
chitecture equipped with custom plugins for updating grounded semantic infor-
mation. While these projects have laid the foundations for the spatial grounding
of semantic data, they do not directly address neither dense, highly dynamic
spatial data, often found in human-robot interaction situations, nor continuous
data fields (akin to mightability maps [22]).

Representation of spatial semantic data has also been a research subject in the
Human-Robot Interaction (HRI) domain. In [17], authors define a perspective-
taking approach aiming at solving ambiguities in grounding speech interactions
between humans and robots. Here, they use an ontology-based [16] approach to
associate objects in space with semantic concepts. The semantics in this case
might refer to the object class or to the spatial relationships with the other ob-
jects in the scene. In [11], the authors implement a system aiming at the ground-
ing of target objects in the scene based on human-robot speech interaction. They
combine 2D and 3D features to speech detection to extract actions to perform
with the robot targeting specific objects in space. A similar goal motivates the
work in [24], where the authors propose INGRESS, a deep learning-based ap-
proach for unconstrained matching of spatially-grounded expressions and objects
in human-robot verbal interaction.
4 https://github.com/RepresentationMaps

https://github.com/RepresentationMaps
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Vimantic [6] SOM+ [23] SPARK [?] reMap
KB Integration pull pull push SPARQL API

Human Modelling No No Yes Plugin
3D Dense Fields No No No Yes

Architecture Modular Monolithic Modular Modular
Spatial Reasoning No Yes Yes Yes

Spatial API No No No Yes
Data Structure Point cloud Point cloud CAD meshes OpenVDB

Table 1: Comparison of various frameworks for spatially grounded semantics
representation, highlighting their integration with knowledge bases (KB), sup-
port for human and 3D field modelling, architectural design, spatial reasoning
capabilities, availability of an API to retrieve spatially localised volumes, and
underlying data structures.

While these approaches prove to be effective for object-based contexts, they
also leave some open challenges. One challenge is the need to scale these methods
to accommodate newly-defined, custom semantic features, a capability not cur-
rently supported. Additionally, there is the need to structure these approaches for
free-form representation of spatially-grounded semantic information, as they are
presently tied to RGBD data or pre-acquired object meshes. Recently, there have
been advances in the field of natural language-based spatial reasoning through
large language models (LLMs) [2, 14]. In [5], authors present a novel methodol-
ogy for zero-shot object-based navigation. Here, they combine LLMs and vision
language models (VLMs) to generate sequential navigation decisions, based both
on an explicit user request and the current state of the environment. The VLM
is applied for grounding the semantic concepts expressed in the request into the
detected objects in space. While LLMs and VLMs present promising results in
reasoning and show zero-shot abilities in grounding semantics in space, they also
suffer some limitations. In fact, they are not able to spatially represent unstruc-
tured, field-like semantic information with exact location in space. Moreover,
they might suffer the definition of application-specific semantics that do not
represent any type of traditional common knowledge.

With reMap, we aim at addressing the gaps in representation capabilities
from previous works highlighted in this section. A comparison between the fea-
tures presented in the implementation of our framework and those from previous
works are presented in Table 1. In Section 6, we briefly discuss as future work
the possible combination of this work with LLMs to directly query reMap using
natural language.

3 Semantic Information in Space

Representing spatially grounded information in space means associating seman-
tic labels to regions of space in the robot’s vicinity. This representation can be
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associated both to discrete phenomenons (e.g., associating the object class id to
the areas occupied by the object itself) or to continuous ones (e.g., expressing
the field of view of as a function of the distance from its gaze central axis).
In this section, we formally introduce our framework for 3D-grounded semantic
data representation and processing.

:Face

:Artifact

:FieldOfView

:Obstacle

:Artifact

(a)

ns:Class1

ns:Class2

ns:Class3

ns:Class1

ns:Class4

ns:Class1

ns:Class5

(b)

Fig. 2: RMSs build RMs from the percepts available to the robot. Each RMS
might output multiple RMs, each representing different spatial information from
the scene, and with an explicit data class attached (a). Operators (like � and ©? ,
representing generic operators) can combine several maps to output new ones,
of the same type (e.g. in (b), �) or not (©? ).

3.1 Conceptual Description of the Framework
3.1.1 Data representation and processing In the proposed model, we in-
troduce the concepts of Representation Maps (RMs) and Representation
Maps Sources (RMSs). The former are spatially-grounded representations of
semantic information, that is, they map 3-dimensional world coordinates to val-
ues associated to specific semantics (e.g., the object class associated with the
detected objects). They can be represented as functions m. Each m belongs to a
specific functional M = {R3 ⇒ R}, associated with the semantics of the infor-
mation represented in m. To each map m is also associated additional explicit
information regarding the semantics of values in m (see Section 3.1.2).

RMSs are themselves functions; their role is to transform information avail-
able to the robot at a given time into RMs. RMSs belong to the functional
P = {P(S) → Mn}, where S is the set of information available to a robot at
a given time and P(S) is its powerset (Fig. 2a); n depends on each RMS and
represents the number of RMs each RMS can output. The value of n can change
over time.

3.1.2 Semantics Each map represents data with specific semantics. Criti-
cally, each map is semantically homogeneous: its data represents a single type
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of information. We rely on the Resource Description Format (RDF) terminology
and formalism to formally assign the semantics of the data contained in each
map. We do so by attaching an RDF class to the map (for instance, relying
on the OpenRobot Ontology [16] semantics, we use the class oro:Artifact for
maps representing objects in space). This semantic information is used by map
operators (see below) to reason and combine maps in a semantic-aware manner
(Fig. 2b).

3.1.3 Combining RMs with operators RMs can be combined by oper-
ators. An operator is a function that combines two or more RMs into a new
RM. The input RMs might or might not be associated to the same class. The
output RM might belong to the same class as one of the input RMs or to a
new one. Given k RMs m1, . . . ,mk, an operator on these RMs is defined as
f1,...,k := m1, . . . ,mk → mres.

An example of operator over same-class RMs is the one combining all the
object-detection RMs into a single one. For instance, different RMSs might gen-
erate maps containing information of the detected objects in the scene, where
each RMSs runs a differently specialised object detection algorithm (YOLO [28],
RGBD-based table detecion, etc.). For a global view on the objects detected in
the scene and for further semantic processing, we are interested in the combi-
nation of these different RMs. Therefore, we define the object-detection RMs
combing operator. Given j object-detection RMs mok , k = 1, .., j, with asso-
ciated class oro:Artifact, this operator is defined as fo(mo1 ,mo2 , ...,moj ) =
mo1∪mo2∪...∪moj . The ∪ operation is the union between the different functions.

Once obtained the full object-detection RM, we might be interested in under-
standing which of these objects are in the FoV of an agent. This information can
be obtained by defining the operator fof (mo,mf ); this takes as input an RM
with class Artifact (mo) and one with class FieldOfView (mf ) and outputs a
new RM containing only those voxels of mo that happen to be in the represented
field of view in mf (that is, mf acting as a boolean mask).

4 Operators as semantic queries

Practically, operators can be seen as transformations over the available RMs.
These transformations can be described as SQL-like queries over the available
semantic data. To this end, we have developed a simple query language whose
grammar is based on the RDF graph query language SPARQL5. The language is
based on (semantic) pattern matching, where the user defines a set of constraints
that the RMs must satisfy. The query is then executed over the available RMs,
and a new RM, simultaneously satisfying all the constraints, is returned. As
such, the query is the declarative specification of an operator.

For example, the following query retrieves the voxels containing a mug in
the field of view of a human human1 – it is a possible implementation of an
objectInFieldOfView operator:
5 https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/
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PREFIX : http://kb.openrobots.org/
SELECT ?voxels
WHERE
?voxels :inFieldOfView human1 .
?voxels :containsObject ’mug’
STORE
:containsObject

The STORE clause is an extension indicating the datatype of the resulting
RM. In this case, the query returns a RM where each voxel contains the class
label of the objects in the selected voxels.

In practice, to actually implement a prototype of this query language, each
RM m is attached to exactly one RDF property p. We denote D(p) the domain of
the property, and R(p) its range. For instance, the property oro:containsObject
(which associates an object to its COCO-80 [19] class) has oro:Artifact as do-
main. In Section 5.5 we present a first implementation of the query execution
system.

Fig. 3: The reMap framework (boarded in yellow) interacting with non-reMap
ROS components. The plugins generate RMs with information provided by the
non-reMap nodes. These RMs are then handled and exposed to queries by
representation_manager.

5 Implementation

Given the interactive robot-oriented nature of the proposed model, a software
implementation is required to prove its capacity to model semantic informa-
tion in the scenario around a robot. Considering the limited computational re-
sources available to robots and that these usually have to sustain several other
computation-heavy processes (e.g., navigation stack), it is required for the im-
plementation to be lightweight. Ideally, the model should reach real-time per-
formance, so that the robot’s response based on the the values in RMs is not
negatively impacted.

We opted for a ROS-based implementation of reMap. At this point, ROS is
a highly mature framework for robot programming, coming with all the tools
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required to achieve the aforementioned desired performances. The architecture
built to implement the model is plugin-based. Plugins were implemented through
ROS pluginlib C++ library; we developed two different open source ROS
packages:

– rep_map: a package implementing the API and the basic tools required to
manage the output of the executing RMSs, that is, the active representation
plugins. This includes:

• the interfaces for the definition of inter-maps operators;
• a query API, presented in Section 4;
• representation_manager, a ROS node for handling the multiple maps

generated by the different RMS and the input queries.

– rep_plugins: a package providing the basic interfaces and tools to imple-
ment RMSs as plugins. It comes with a group of ready-made plugins.

In Fig. 3, we graphically highlight the reMap ROS components (plugins,
representation_manager) within a generic ROS architecture.

5.1 rep_map

This package provides the software required to manage the plugins activation
(that is, the software implementing a specific RMS), as well as their de-activation
at runtime. In this way, the robot can dynamically adapt to the semantic context
and always run only the required representation processes.

The package provides the required interfaces to define same-domain and
inter-domain operators. Some operators are already defined, for instance the
operator to combine object-detection RMs into a comprehensive one. A ROS
node (representation_manager) is part of the package, instantiating the re-
quired ROS structures for communication between the plugins and the other
ROS nodes part of the robot infrastructures. The package also incorporates util-
ities for RMs visualisation and debugging.

5.2 rep_plugins

The rep_plugins package provides the required structures to develop the se-
mantic plugins (that is, the RMS software implementation) and the API to in-
teract with them. It requires every plugin to be implemented as a class inheriting
from semantic_plugin_base. This class already provides the required function
to set values for specific areas and shapes of the space in RMs. Each plugin
can access the information available to the robot through the ROS communi-
cation interface. The package comes with a limited number of plugins already
implemented.
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5.2.1 Person detection plugin This plugin outputs a single RM where the
contained voxels represent the space portions occupied by people. It relies on
YOLOv8 [28] image segmentation results, mapping each person’s mask to space
using an RGB-alinged depth image of the environment. The plugin does not
directly perform image segmentation; this task is performed by an independent
node, publishing the results as a custom message.

5.2.2 Gaze detection and FoV plugin This plugin handles the semantic
information associated with the gaze direction of agents. In our implementa-
tion, detected n agents, it outputs n RMs. Each one of them is a boolean one,
representing the field of view of each detected person. Each map might also be
associated with a specific person, according to the face recognition pipeline.

This plugin does infer the agents gaze direction: it retrieves information about
the agents gaze through the ROS4HRI [20] tools and utilities. In ROS4HRI, every
gaze is associated with a gaze_<face_id> TF frame. The z axis of this frame
points to the agent’s estimated gaze direction. Accordingly, the plugin represents
the region of space currently looked at by the agent as a cone.

We set the aperture of the field of each gaze cone to θ = 0.5rad. The equation
for each gaze cone in the output RMs is:

m(x) =

{
true for x inside the cone
false elsewhere

(1)

5.2.3 Object detection plugin This plugin handles the semantic informa-
tion related to the objects detected in the scene. Every object might be associated
with various types of semantic information. In this case, we focused on the object
class, expressed as an integer value.

As for person detection, this plugin does not directly perform object detec-
tion, but subscribes to a topic where information on the detected objects in the
scene are published in the form of segmentation masks. Then, as in person de-
tection, the plugin uses the RGB-alinged depth image to generate an RM where
voxels are associated to pixels from the original image; here, each activated voxel
contain an integer value representing the object-class of the associated object.

5.3 RMs implementation

The framework described in 3 requires, for effective implementation, a lightweight
and efficient structure to represent 3D information. We opted to represent each
RM as an independent VDB. VDBs are dynamic structures that use a sparse
hierarchical data structure to efficiently store volumetric data based on voxels.
This structure allows for memory-efficient representation of 3D grids, where only
voxels with nonempty values are stored, optimising both storage and computa-
tional performance. In this case, we used the OpenVDB [21] library, which is the
de facto standard for python and C++ implementation of VDBs. Each RM is
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represented as a Grid<T> object, where T specifies the type of the value associ-
ated with the grid voxels. Therefore, faces RMs are Grid<float>, object RMs
are Grid<int> and FOV maps are Grid<bool>.

In OpenVDB, each Grid<T> object contains a Transform object. This is
continuously updated with the transform between the original data frame and
a reference frame, which is shared among the whole architecture. This way, the
corresponding points in the index space of the various Grid objects can map to
the same real-world coordinates.

The OpenVDB API provides the required functions and interfaces for RMs
representation and processing, including for the implementation of the operators
described in Sec.3.1.3.

5.4 Demonstration on real-world data

Fig. 4: RMs generation from real-world data acquired in an hospital. For refer-
ence, we overlay the perceived point cloud over the voxel maps.

To validate the implementation of rep_map and rep_plugins, we tested
the framework to generate RMs on a set of pre-recorded bag files through the
previously described plugins (Fig. 4).

The bag files were recorded during a 2-month deployment in a hospital in the
metropolitan area of Barcelona and depict a corridor in one of the rehabilitation
wards. This environment is representative of complex human environments where
we expect social robots to have impact. During the recording session, performed
using a PAL Robotics TIAGo robot, both nurses and patients were present in
the area. For privacy reasons, we will not disclose the bag files recorded to test
the framework.

Each plugin generates its RMs at the same pace as their input stream: for
instance, when running YOLOv8 largest pre-trained model (yolov8x) on the
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available hardware, the YOLO dedicated node outputs results at 5Hz; the face
detection pipeline, directly running on the robot, outputs results at 20Hz; for
this reason, reMap allows for asynchronous generation and combination (through
operators) of different RMs. In this demonstration, reMap shows real-time ca-
pabilities in handling the RMs generated by the different plugins.

5.5 Proof-of-concept implementation of the query language

Fig. 5: Two examples of reMap query execution. On the left, a query extracting
all the objects detected in the scene. On the right, combining object information
and the detected field of view of the person in the scene, we extract information
on the object looked-at by the nurse.

We have implemented a first version of the query language described in Sec-
tion 4. This includes a simple algorithm for query parsing, RMs selection, oper-
ator definition and execution.

The query parsing disassembles the queries and selects the target domain
(expressed by the STORE extension) and the RMs involved in the operator exe-
cutions. This is possible by matching the properties from the query with those
associated to the RMs, as specified in Section 3.1.2. The API introduced in the
previous subsections enables the actual processing of the query as operator. At
runtime, the system exposes a ROS service for queries. In case of successful exe-
cution, a new RM containing the query result is created. In case of non-matching
attributes in the query, the system aborts the query execution and communi-
cates it to the requester as a result of the service execution. Two examples of
query-based data extraction are reported in Fig. 5. The reported queries have
been executed over the real-world data collected for validation purposes.
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6 Discussion

6.1 Query language

Although our query language demonstrates effectiveness in a range of scenarios,
it remains at an early stage of development. Future iterations should aim to
incorporate features akin to those found in SPARQL (including, for instance,
the implementation of the FILTER clause), enabling users to formulate more
intricate queries with ease. We also plan to formally examine the mapping of
SPARQL semantics to spatial data maps.

6.2 Future work

6.2.1 Spatial queries from natural language While query languages pro-
vide an effective programmatic interface to retrieve (spatially-grounded) seman-
tic information, they do not automatically fit HRI scenarios with humans com-
municating with natural language. Therefore, what is required for the deploy-
ment of the querying system in HRI scenarios is the automatic translation of
natural language utterances into queries based on the aforementioned language.
In this sense, LLMs have proved to be a good fit for the adaptation and trans-
lation of natural language to query languages [7, 29, 30]. In this context, we
plan to adapt our framework to the extraction of spatially-grounded semantic
information from natural language using GPT-4 [1].

6.2.2 Time modelling While reMap can ground semantics in 3-dimensional
space, it does not address temporal aspects. This is a feature available in previous
world-modelling works in HRI [18]. We plan to extend reMap to include a time-
consistent modelling of space. This will enable the system to extend its modelling
capabilities beyond the immediately observable scenario.

7 Conclusion

In this work we introduced reMap, a novel framework for the representation,
processing and querying of spatially-grounded semantic information in robotics.
Firstly, we defined the theoretical concepts behind the framework, introducing
the concepts of Representation Maps, Representation Map Sources and Maps Op-
erators. We also explained how it is possible to define a SPARQL-based querying
system to extract spatial information from Representation Maps.

We then proceeded illustrating a ROS-based implementation of the con-
ceptual framework introduced in the previous chapters, with the description
of rep_map and rep_plugin. The described reMap implementation is publicly
available as an open-source package; the link is provided in previous sections.

Finally, we tested the information representation capabilities of the imple-
mented solution over real-world data, reporting the processing performance and
the visual representation of queries performed over the generated maps.
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