
Towards using Behaviour Trees for Long-term Social
Robot Behaviour

Sara Cooper
PAL Robotics
Barcelona

sara.cooper@pal-robotics.com

Séverin Lemaignan
PAL Robotics
Barcelona

severin.lemaignan@pal-robotics.com

Abstract—This paper introduces a Behaviour Tree based
design of long-term social robot behaviour in the context of
SHAPES project, using ROS-compatible libraries, specifically
two types of behaviours: a robot idle behaviour where the
human approaches and begins the interaction, and a second
behaviour where the robot actively navigates and searchers for
a specific user to deliver a reminder. The behaviours will be
tested on-site as part of SHAPES pilots and adjusted based
on feedback and needs and is focused on long-term robot
acceptance.

Index Terms—human-robot interaction, older care, social
robot

I. Introduction

A. Behaviour trees to model social tasks

Modelling the diversity and complexity of behaviours
of a social robot is a challenging task. In the past, most
robots were one-task-specific, but as problem complexity
increases, it is necessary for their internal software archi-
tecture to be able to easily extend, adapt to changes, and
for that, modularity is key.

Behaviour Trees (BTs) have been used in the past to
model different tasks or robot behaviours [1]–[3], proposed
initially Mateas and Stern [4]. A Behaviour Tree (BT) is
a formalism to structure the switching between different
tasks in an autonomous agent, such as a robot or a virtual
entity in a computer game [5].

A Behaviour Tree is a hierarchical tree of nodes, where
leave nodes are executable programs that correspond to
robot actions: pick up an object, say something, do a
gesture. The tree is executed or “ticked” from left to right,
where each child node that has been ticked may return a
result of success, failure or running (node has not finished
executing). There are three main types of control flow
nodes:

1) Sequence: every time the control node receives a tick,
it ticks the first of his children, once it returns success
it will tick the next child. Once all the children of the
sequence return success, the parent will also return
success. It is the most common type used to do
consecutive actions;

2) Decorators: they have only one child, such as Repeat
or Retry;

3) Fallbacks: ticks the first child, if it is success it
returns success; if failure, it ticks the second child.
For example, if no user is recognised after a given
time, we can have a fallback action that makes the
robot go to its initial position;

4) Parallel: it runs two child nodes at the same time.
If one of the child returns failure or success, it
will stop the execution of the other child. The
number of failures or successes is often dependent
on a threshold. For example, if we want to navigate
around while detecting faces.

In addition, there are two execution or leaf nodes: Action
nodes, that execute a task without checking a condition
(e.g. pick an object, go to dock station, say something);
and Condition nodes, that check a condition (e.g. face
detected yes or not).

In contrast to other alternatives such as Finite State
Machines (FSMs), Behaviour Trees make it easy to switch
between different tasks of an autonomous robot, offer
higher modularity and reactiveness, that lead to their use
in Robotics and AI applications. This is a key requirement
for dynamic environments as typically found in HRI and
social robotics. For instance, if the robot is moving towards
a person and another person enters the planned trajectory,
it should adapt its behaviour quickly [6].

Specifically, some advantages of Behaviour Trees in
contrast to FSM include [1]:

• Modularity: separate into building blocks, as such
also offering possibility to extend the trees compose
behaviours of sub-behaviours. For example, we can
make ”Go to Poin A” as sub-tree of ”Look for User”;

• Reactivity: quickly enables reacting to changes;
• Enable separation of tree structure from node imple-

mentation, option to reuse a node several times;
• Can run several nodes in parallel, instead of one state

at a time;
• Expressivity: easier to understand behaviour tree

workflow and express complex flows, also with possi-
bility to add custom nodes;

• Easily reusable code and maintainable.



B. The SHAPES project
H2020 SHAPES project1 is a European project that

aims to create the first European open ecosystem that en-
ables the large-scale deployment of a broad range of digital
solutions to support and extend healthy and independent
living among older individuals. Specifically, PAL Robotics
ARI robot [7] is being used for one of the pilot deployment
[8], that aims to use the robot at clinics in Mallorca
(Spain), with older adults between 70-90 at their shel-
tered apartments. The robot is expected to autonomously
deliver reminders, play games, monitor temperature, or
fill the daily menu. The robot additionally integrates a
set of technologies shared accross the whole SHAPES
ecosystem, like face recognition, detection, authentication
mechanisms, chatbot and emotion recognition. Figure 1
shows some example screens.

Fig. 1. SHAPES apps menu, reminders’ screen, and authentification
screen

Modelling a suitable human-robot interaction behaviour
is a key requirement to achieve robot acceptance in this
scenario. As the pilots will run across different phases, and
will be re-adjusted based on feedback, the architecture
should be easily extensible, building on reusable modules.
At this stage only Behavior Trees will be used as no further
need has been identified to use FSM, however, as pilots
progress, they may be also used.

II. Related Work
Behaviour Trees have been used in different robotics

sectors such as autonomous vehicles or industrial robotics
[3], [6], [9]. In case of industrial robotics, a major reason
has been the shift between single-task industrial appli-
cations, to collaborative robots that need to perform in
unstructured environments.

For robot modelling additional architectures used in-
clude SMACH 2 [10], a ROS independent Python library
that builds hierarchical state machines. However, for
unstructured tasks such as social interactions, it falls
short.

There is some related work done that applies Behaviour
Trees to model robot behaviours [1], including virtual
agents [5], but little when it comes to modelling social
behaviour. Axelsson [3] used BT for dialogue management

1https://shapes2020.eu/
2http://wiki.ros.org/smach

of interactive robots, tested in SciRoc challenge, where
robots such as Pepper [11] and TIAGo [12] where used int
he context of taking an elevator.

III. Proposed Approach
ROS (Robotics Operating System) is used as a basis

for implementing Behaviour Trees of SHAPES user-cases.
The BehaviourTree.CPP3 library has been used, which
enables easy integration with the ARI robot due to its
full ROS support.

Implementation wise, the advantage of using Behaviour
Trees observed is that any kind of ROS action, service or
topic can be wrapped as a BT node and also saving and
passing values accross the tree nodes. For instance:

• ShapesFaceIdentifConditional: checks the topic /fac-
erecognised, of type Boolean, and outputs a String
that is stored as username, name of the identified
person, in the Blackboard of the tree; that can be
used in another node;

• GoToWebAction: publishes the web URL indicated
as input port to the node to a /web/goto topic;

• TTSAction: triggers the ROS action /tts with the
text to be said by the robot

It also makes it easy to use different face recognizers,
as as long as they are both publishing to the same ROS
topic, the same BT node can be used.

The interactive behaviour of the robot is implemented
as two independent Behaviour Trees, that consist of two
XML files: idle behaviour, and deliver reminders.

These behaviour trees were designed with Groot4.

A. Modelling Robot idle behaviour
In this behaviour, the ARI robot remains at the dock

station, positioned at a side of the house, in a ”sleeping”
mode e.g. head down. For a first test, this has been
modelled by lowering the head down, and keeping still.

Figure 2 shows the complete behaviour tree sketched
using Groot. As it can be observed, it will be constantly
repeating the tree using a Repeat node, as the goal is to
have long-term interaction where the robot starts from a
”sleeping” position, interacts when a user comes, and goes
back to ”sleeping” position when done.

The Sequence starts by ”tick”ing the first child on
the left, which is a TTSAction Control Action node
that triggers robot Text-To-Speech with movements. The
type of robot motion to do is indicated in tags <mark
name=’doTrick trickName=sleep’/>.

Next, the conditional node InteractionStatusCondi-
tional waits to detect any human interaction. This is
defined as one of the following:

• Face has been detected, OR
• Touch-screen has been pressed, OR
• Speech has been detected.

3https://www.behaviourtree.dev/, developed by Davide Faconti.
4https://github.com/BehaviourTree/Groot

https://shapes2020.eu/
https://www.behaviourtree.dev/
https://github.com/BehaviourTree/Groot


Fig. 2. Complete behaviour tree for the robot’s Idle behaviour

If any of above is detected, the node returns success,
and will tick the next node that makes ARI raise the head
and look around.

Once interaction has began, the tree enters a Parallel
sequence. The advantage of Parallel control flows is that
it is possible to run two tasks at the same. Specifically,
the robot tries to detect a face (ShapesFaceConditional
node), but if none is detected after a specific time (Delay
decorator node), the right branch will return failure,
together with the left branch (no face detected, resulting in
another failure). As in the Parallel a failure threshold of 2
has been defined, the Sequence will return failure, and the
tree would start again thanks to the RetryUntilSuccessfull,
by putting the robot to sleep.

In contrast, if a face is detected, the left branch of
the Parallel will return success, and thanks to the success
threshold of 1, the tree will continue ticking the next node.

Once a face has been detected, the tree follows a similar
pattern to try to recognise the face. The Parallel node in
this case offers two options to return a success:

• Face is recognised, where ShapesFaceIdentifCondi-
tional returns success), so the robot displays the
SHAPES Apps Menu to the user using the GoToWe-
bAction Control Action node. The left branch is
successful.

• No face is recognised after 5 seconds, in such case the
robot displays the SHAPES login page so the user
can authenticate using username and password login
using the same GoToWebAction node.

Finally, it is important for the robot to know when
an interaction is finished. For this the InteractionStatus-
Conditional Decorator node is checked continuously until

it returns failure, that is, no face, speech or touch-screen
action is detected. The behaviour then ends by going back
to sleep and starting from the beginning.

B. Modelling robot look for user behaviour
The second behaviour requires the robot to:
• Stay at the dock station
• Undock when it is time to deliver a reminder
• Navigate accross a series of points while detecting a

face
• Stop if a face is detected
• Recognise the needed user
• Deliver the reminder using speech and touch screen
• Carry out additional interactions if needed
• Return back to dock station
Figure 3 shows a top-view of an example map the robot

can navigate around, indicating the location of the dock
station. In purple indicated are the Points of Interests
(POI) that the robot will navigate through, until a face
is detected.

Unlike the previous case, here the behaviour is not
executed repeatedly, only when a reminder is sent. To
start the BT, the variables name and text are inputted
to the Blackboard, indicating who the robot should look
for, and what to show on the touch-screen.

Firstly, as seen in Figure 4 there is an UndockAction
Control Action node, that triggers the needed ROS Action
to leave the dock station. Then, similar to the idle
behaviour, there is a Parallel structure. - The left branch
tries to detect a face, if any is detected, the robot will say
“Hello” - The right branch will continue running until
it returns failure. Specifically, it sends the robot to a



Fig. 3. Example robot map with Points of Interests and Dock
Station. As the robot navigates across, it stops once a user is detected
and identified to deliver the reminder

list Points of Interests (POI), that are previously defined
in the map of the robot: PointA, PointB and PointC
(stored in the BT blackboard as ListPois variable). The
SelectPoiAction pops the first POI, e.g. PointA to the
POIgoal variable, and uses the GoToPOIAction to send
the robot to the target poi. Every time the robot reaches
the goal, it says ”I am looking for name, I have a reminder”.
Once the robot goes through all points, the right branch
will return failure.

Note that if no face has been detected after checking
all the points of interest, the tree has a Fallback node,
making the robot go back to the dock station. If a face is
detected while the robot is moving, the robot will stop.

Fig. 4. Look for user behaviour 1: undock and go through a series
of Points of Interest until a face is detected. Check if face recognised
matches user to be found and deliver reminder if needed

Next is the process of identifying the face, similar to
the idle behaviour. The difference here as seen in Figure
5 is that the robot checks if the username returned by
the recogniser matches with the name it should look for
(BlackBoardCheckString). If this is the case, it will display
the reminder needed seen in Figure 1. If not, it will ask
the user to authenticate using credentials.

Ending the interaction is similar as well, with the
difference that when no interaction is detected, the robot
is sent to its docking station using the DockAction, after
alerting using speech.

Fig. 5. Look for user behaviour 2: return to dock station when no
interaction is detected

IV. Discussion

Especially in the context of human-robot interaction,
reactivity is highly important, as robots are in unstruc-
tured environments where humans may enter and exit the
scene at any time, and for human safety, robots need to
be able to quickly stop, as is the case of looking for a user.
To this end, BT has been regarded a useful tool for these
pilots.

While Behaviour Trees offer higher modularity than
Finite State Machines, it is observed that for situations
with high variability or complexity, they could pose similar
limitations. To this extend, it would be considered better
to use BT exclusively for tasks that form a plan, but use
a higher-level planning approach to combine them.

When it comes to behaviour modelling, empathetic
robots are demonstrated to increase acceptability, by
making idle motions when idle [13] - such as moving arms
and head slightly, and a higher degree of politeness and
when the needs to interrupt a person [14]. For example, by
the robot saying to this end,“Hello, sorry for disturbing,
but are you Sara? I have a reminder for Sara”. Both of
these may be added to the Behaviour Tree as nodes.

V. Future Work

During the SHAPES initial pilots in Can Granada
residence 5 and Clínica Humana 6, the preliminary be-
haviours will be tested, and will be adjusted based on their
performance and user preference. Some improvements may
include better defining when to end interaction or trigger
a reminder. Additional extensions planned include adding
a voice-based chatbot.

5https://www.cangranada.com/
6https://www.clinicahumana.es/

https://www.cangranada.com/
https://www.clinicahumana.es/


Thanks to the modularity and hierarchical nature of
the behaviour trees, it will be possible to extend the robot
behaviour in the future. For example, once the robot finds
a user at Point C, instead of only delivering a reminder,
it could then continue to find another person or help the
user to another room. If needed the usage of FSMs will
also be considered.

ACKNOWLEDGMENT
This work was supported by the SHAPES project, which

has received funding from the European Union’s Horizon
2020 research and innovation programme under grant
agreement no. 857159

References
[1] M. Colledanchise and P. Ögren, Behavior Trees in Robotics

and AI. CRC Press, Jul. 2018. [Online]. Available: https:
//doi.org/10.1201/9780429489105

[2] R. Ghzouli, T. Berger, E. B. Johnsen, S. Dragule, and
A. Wąsowski, “Behavior trees in action: A study of robotics
applications,” in Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering,
ser. SLE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 196–209. [Online]. Available:
https://doi.org/10.1145/3426425.3426942

[3] N. Axelsson and G. Skantze, “Modelling adaptive presentations
in human-robot interaction using behaviour trees,” in
Proceedings of the 20th Annual SIGdial Meeting on
Discourse and Dialogue. Stockholm, Sweden: Association
for Computational Linguistics, Sep. 2019, pp. 345–352.
[Online]. Available: https://aclanthology.org/W19-5940

[4] M. Mateas and A. Stern, “A behavior language for story-based
believable agents,” IEEE Intelligent Systems, vol. 17, no. 4, pp.
39–47, 2002.

[5] I. Hasegawa, T. Hasegawa, K. Kurosaka, A. Kishi, A. Iwasawa,
and Y. Miyake, “How to build a fantasy world based on reality:
A case study of final fantasy xv: Part ii,” in SIGGRAPH Asia
2017 Courses, 2017, pp. 1–149.

[6] F. Martín, F. J. Rodríguez Lera, J. Ginés, and V. Matellán,
“Evolution of a cognitive architecture for social robots: Inte-
grating behaviors and symbolic knowledge,” Applied Sciences,
vol. 10, no. 17, p. 6067, 2020.

[7] S. Cooper, A. Di Fava, C. Vivas, L. Marchionni, and F. Ferro,
“Ari: The social assistive robot and companion,” in 2020 29th
IEEE International Conference on Robot and Human Interac-
tive Communication (RO-MAN). IEEE, 2020, pp. 745–751.

[8] S. Cooper, A. Di Fava, Ó. Villacañas, T. Silva, V. Fernandez-
Carbajales, L. Unzueta, M. Serras, L. Marchionni, and F. Ferro,
“Social robotic application to support active and healthy age-
ing,” in 2021 30th IEEE International Conference on Robot &
Human Interactive Communication (RO-MAN). IEEE, 2021,
pp. 1074–1080.

[9] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A
survey of behavior trees in robotics and ai,” arXiv preprint
arXiv:2005.05842, 2020.

[10] J. Bohren and S. Cousins, “The smach high-level executive [ros
news],” IEEE Robotics & Automation Magazine, vol. 17, no. 4,
pp. 18–20, 2010.

[11] A. K. Pandey and R. Gelin, “A mass-produced sociable hu-
manoid robot: Pepper: The first machine of its kind,” IEEE
Robotics & Automation Magazine, vol. 25, no. 3, pp. 40–48,
2018.

[12] J. Pages, L. Marchionni, and F. Ferro, “Tiago: the modular
robot that adapts to different research needs,” in International
workshop on robot modularity, IROS, 2016.

[13] R. H. Cuijpers and M. A. Knops, “Motions of robots matter! the
social effects of idle and meaningful motions,” in International
Conference on Social Robotics. Springer, 2015, pp. 174–183.

[14] P. E. McKenna, I. Keller, J. L. Part, M. Y. Lim, R. Aylett,
F. Broz, and G. Rajendran, “” sorry to disturb you” autism and
robot interruptions,” in Companion of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, 2020,
pp. 360–362.

https://doi.org/10.1201/9780429489105
https://doi.org/10.1201/9780429489105
https://doi.org/10.1145/3426425.3426942
https://aclanthology.org/W19-5940

	Introduction
	Behaviour trees to model social tasks
	The SHAPES project

	Related Work
	Proposed Approach
	Modelling Robot idle behaviour
	Modelling robot look for user behaviour

	Discussion
	Future Work
	References

