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Abstract— Explicitly showing the robot’s knowledge about
the states of the world and the agents’ capabilities in such states
is essential in human robot interaction. This way, the human
partner can better understand the robot’s intentions and beliefs
in order to provide missing information that may eventually
improve the interaction. We present our current approach for
modeling the robot’s knowledge from a symbolic point of view
based on an ontology. This knowledge is fed by two sources:
direct interaction with the human, and geometric reasoning.
We present an interactive task scenario where we exploit the
robot’s knowledge to interact with the human while showing
its internal geometric reasoning when possible.

I. INTRODUCTION

“Why is this robot doing this now?!” This is the typical
question that at some point a user asks herself when interact-
ing with a robot. And most probably, not only naive users,
but also robot designers when working with their robots.
Understanding and knowing the robot’s internal knowledge
and reasoning states is fundamental to improve any type of
interaction. Feedback is specially crucial when a problem
occurs, or when the robot makes an unexpected decision. Ide-
ally, this feedback should be given through a natural dialogue
where the robot explains its decisions and actions. In order
to have robots capable of reasoning on their own internal
states to naturally communicate with their human partners,
several supportive mechanisms should be considered.

In this work we introduce several mechanisms and their
connection applied to a face-to-face interactive task. In this
task the human asks the robot about its knowledge on
objects in the environment and about its reasoning on the
agents’ abilities in the world. Thus, we present an approach
for modeling the robot’s knowledge based on an ontology
(Sec. II) and a geometric reasoner that transforms geometric
world information into symbolic descriptions (Sec. III). A
decisional reasoner interprets the human query (entered
through keyboard) in order to identify the referred object
(Sec. IV) and then queries the robot’s knowledge about it
to answer the human. Human queries are limited to a fix
vocabulary and a specific format (interpretation of natural
language is out of the scope of this work). The reply is at
least given by spoken language (and written on the screen),
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and if possible, by visual feedback from the robot’s internal
3D environment model.

II. KNOWLEDGE REPRESENTATION

We believe that the knowledge model of a robot should
include a comprehensive model of the roles, relationships and
context of objects in the environment, as well as beliefs and
intentions of other agents. Moreover, this understanding must
rely on a formal encoding that requires high expressivity
while remaining well suited for machine processing in order
to be used by the robot.

We thus propose the use of ORO (the “OpenRobot
Ontology” server), a central knowledge repository that
stores, manages, processes and exposes knowledge for
the robot from a symbolic point of view. It inter-
nally relies on RDF-derivate OWL Description Logics
to formally represent statements on the world as triples
<subject> <predicate> <object>. It uses two
open-source libraries: Jena for storage and manipulation of
statements and Pellet first-order logic reasoner to classify, ap-
ply rules and compute inferences on the knowledge base [1].

ORO defines an initial upper ontology for human-aware
robotics called OpenRobots Commonsense Ontology. This
initial ontology contains a set of concepts, relationships
between concepts and rules and defines the “cultural back-
ground” of the robot, i.e. the a priori known concepts.
Currently, this commonsense knowledge is focused on the
requirement of human-robot interactions in everyday envi-
ronments, but contains as well generic concepts like thing,
object, location and relationships between those. The
common-sense ontology design relies heavily on the standard
OPENCYC upper ontology for the concepts naming, thus
ensuring a good compatibility with other knowledge bases.
Figure 1 illustrates a simple example with some concepts.

Besides simply storing and reasoning about knowledge,
ORO offers several useful features for human-robot inter-
action. One advantage offered by the ORO architecture is
that independent cognitive models for each agent can be
maintained. When the robot interacts with a new agent, a
separate RDF triple storage is created to store the robot’s
knowledge about the agent’s perception. For instance, in the
case of perspective taking, we compute the visibility and
spatial information about the world from each agent point
of view, and store it in their own cognitive models. Having
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Plant Animal

plant1 animal1 animal2 animal3

green banana grass whiteyellow

hasColor eats eats hasColor hasColor

Fig. 1. Ontology example. Names with first capital letter correspond to
classes; bold names, to properties; and italic names, to instances.
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(c) (d)

Fig. 2. Visual perspective taking for each agent in the scenario.

separate cognitive models allows us to store and reason on
different models of the world.

III. GEOMETRICAL REASONING

This section describes different reasoning mechanisms to
provide an abstraction layer to the decisional layer on top of
the geometrical description of the environment.

To model the environment we use the software platform
Move3D [2]. The kinematic structures of the human and the
robot, as well as their positions and objects’ positions are
integrated into this platform to maintain a coherent model of
the real environment. It also allows us to view the visual
perspective of the agents in the world by modeling their
visual sensors (eyes for humans, cameras for robots).

We divide the geometrical reasoning mechanisms in two
groups: perspective taking descriptors and symbolic location
descriptors. The first set corresponds to information obtained
when reasoning from an agent point of view, while the
second one corresponds to global descriptors independent
of the agents in the environment. All this information is
stored in the ontology, which in turn may infer additional
information as we explain next. Moreover, the information
concerning specific agents, i.e. perspective taking descriptors,
is stored in each agent’s cognitive kernel in ORO allowing
the decisional level to reason about each agents’ beliefs about
the world.

A. Perspective Taking Descriptors

1) Visibility: Visual perspective taking refers to the ability
for visually perceiving the environment from other’s point
of view. This ability allows us to identify objects or regions
that are visible/hidden for/from others, which is essential for
referring to things when interacting with others. For example,
if the robot refers to an object, it should try to ensure that
the human is able to see it in order to facilitate interaction.
On the contrary, if the human refers to an object, based on
the context, she could refer to a visible one (e.g. “take this
ball”) or to an invisible one (e.g. “find the ball”).

We are currently able to compute “visibility” from an
agent point of view for objects in the environment [3] and
zones or regions around the agent [4]. An object or a region
is visible for an agent if, while performing a minimum effort
(i.e. only turning the head or standing, if possible), the object
or region are within the agent’s field of view and there are
no occlusions in between.

2) Spatial: Spatial perspective taking refers to the quali-
tative spatial location of objects (or agents) with respect to
a frame of reference (eg. the keys on my left). Based on this
frame, the spatial description of an object varies. Humans
mix perspectives frequently during interaction [5], i.e. they
do not maintain a consistent perspective through a conversa-
tion. Therefore, the robot has to be able to understand and
compute descriptions of objects based on different frames of
reference to follow the interaction with its human partner.

In this work, we use two types of the frames of refer-
ence: egocentric (from the robot perspective) and addressee-
centered (from the human perspective). Thus, given an object
and the referent, we can compute the spatial locations by
dividing the space around the referent into n regions based
on arbitrary angle values relative to the referent orientation.
For example, for n = 4 we would have the space divided
into front, left, right and back. Further subdivisions can be
computed if we would like to represent distinctions among
distances, e.g. near and far.

3) Reachability: An object or a region is reachable if there
is a collision free posture for the agent where the end-effector
is at the center of the object or region with a given tolerance.
A valid posture includes moving the upper-body or standing,
if possible.

This ability allows the robot to estimate the agent’s ca-
pacity to reach an object, which is fundamental for task
planning. For example, if the human asks the robot to give
her an object, the robot must compute a transfer point where
the human will be able to get the object. Figure 3 illustrates
the reasoning results for reaching regions and an object.

B. Symbolic Location Descriptors

Symbolic location descriptors allow the robot to compute
spatial relations between objects in the environment. The
system infers symbolic relations between objects from its
3D geometric world representation. In this work we propose
the use of three basic symbolic relations between each pair
of objects. However, their inverse relations can be automati-
cally computed at the symbolic level, i.e. through inference
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Fig. 3. (a) Reachable points from the human perspective when bending:
yellow, blue and green points correspond to left hand, right hand and both
hands respectively. (b) Human and robot posture for reaching the cup.

based on OpenRobots Commonsense Ontology, enlarging the
symbolic descriptions knowledge easily.

• IsIn: indicates if an object (or an agent) is inside
of another object. Its inverse relation corresponds to
Contains.

• IsOn: indicates if an object (or an agent) is placed on
top of another object. Its inverse relation is IsUnder1.

• IsNextTo: tests if an object (or an agent) is next to
another object. It has no inverse relation, but symmetric.

IV. FINDING THE REFERENT

Given partial (or complete) description of an object (list
of attribute-value pairs), the robot is able to identify the
referred object the following way. First it obtains all objects
that fulfill the initial description. Based on the result it either
succeeds (obtains one single object), fails (no object with that
description could be found) or obtains several objects. In this
latter case, a new descriptor is added to the initial description
and the process starts over again. Failure occurs when the
description does not match any object from the robot’s
knowledge. This could be because the robot’s knowledge is
incomplete (the human refers to an unknown descriptor or
descriptor value) or due to inconsistent information (human’s
and robot’s beliefs are different).

In order to automatically add a new descriptor (attribute-
value pair), the reasoning engine must find the best discrim-
inant for the current list of objects being evaluated. If found,
the robot asks the human for its value. Discriminants are
descriptors that allow a maximum discrimination among a set
of individuals (eg. color, type, location, etc.). We distinguish
two types of discriminants. Complete discriminants are those
attributes (or properties) whose values can uniquely identify
those individuals. However, they are not always available.
First, because two or more individuals may share the same
value, and second, because not all individuals may share
the same properties. Thus, partial discriminants are those
properties that “better” split the set of individuals in different
subsets based on some criteria. In the task we propose in this
work we only make use of complete discriminants, although
partial discriminants may be useful for other tasks, as the
Spy Game introduced in [6].

1We consider that there is a physical contact between both objects,
although the English definition of under does not necessarily imply it.

The algorithm to find discriminants has the following steps
(to better follow it we show an example corresponding to
the ontology shown in Fig. 1). We search a discriminant
for the following individuals: plant1, animal2 and animal3.
First we obtain the direct properties for all the individuals,
i.e. we do not consider all the hierarchy of properties. In
the example, we only take the most direct class for plant1,
i.e. the class plant (and not the class thing). Next, we
compute the number of individuals per property and the
number of different values for that property. If there is more
than one different value for the property (in other words, if
not all individuals have the same value), then we consider
that property as a potential discriminant. Finally, we sort the
list of potential properties following two criteria: number of
individual occurrences (i.e. the most individuals are covered
by that property, the better) and values occurrences (i.e.
the more distinct values, the better). The best discriminant
corresponds to the first element of the sorted list. If several
properties are equal, return all of them. In our example, the
algorithm would return the property hasColor.

V. APPLICATION

We have designed an interactive task that exploits the
robot’s knowledge while using the different mechanisms
presented in this work. The scenario for the task consists
in a face-to-face interaction around a table with objects. The
human may ask the robot the following questions:

1) Where is the object description?: The robot indicates
the location of the object based on spatial perspective taking
and symbolic location descriptors.

2) Is the object description visible?: The robot com-
putes the visibility of the object from both agents’ perspec-
tives (robot and human) and indicates whether the object is
visible or not. If it is, it also indicates if it is directly visible
(within the agent’s current FOV) or if the object is visible
by turning the head (out of FOV). The view of the agents is
displayed in the screen at the same time (Figures 2c and 2d).

3) Is the object description reachable?: The robot com-
putes the object’s reachability from both agents’ perspectives
(robot and human) and indicates whether the object is
reachable or not. The screen displays the movement of the
agent for reaching the computed posture (Figure 3b).

From the human query, the decisional reasoner extracts
the description of the referred object. The description can be
either the id (eg. YELLOW BOTTLE) or a set of attributes
about the object (eg. yellow bottle). In the first case, if the id
corresponds to a known object, the robot can directly answer
the question. On the contrary, if the object is unknown, then
a learning phase takes place, where the human describes
recursively the type of the object until a known type is
reached. Figure 4 shows an example of the learning process
where the robot asks for the type of object until recognizing
a known type. In the second case, where attributes describing
the object are given, the reasoning engine has to figure out
the id of the object. However, the information provided by
the human may be incomplete or ambiguous. Therefore,
the robot must ask the human additional information until



human (Shows an object to the robot).
robot (Identifies an unknown object.)

What’s the name of the object?
human mist

robot What kind of object is mist?
human laptop

robot What is a laptop?
human computer

robot What is a computer?
human object

robot Now I know what mist is.
Fig. 4. Learning process example where the robot learns that mist is a
computer.

human Where is the bottle?
robot (Available object ids: BLUE BOTTLE, YEL-

LOW BOTTLE and ORANGE BOTTLE.)
(Complete discriminants: hasColor)
Which color is the object?

human Yellow.
robot The YELLOW BOTTLE is located:

- from my perspective: FRONT
- from your perspective: LEFT
- on HRP2TABLE.

human Is the orange bottle visible?
robot (Available object ids: ORANGE BOTTLE)

The ORANGE BOTTLE is visible for me (out
of FOV) and not visible for you.

human Is the white box on my left reachable?
robot (Available object ids: SPACENAVBOX)

The SPACENAVBOX is reachable for me and
reachable for you.

Fig. 5. Interactive task example.

identifying the object [7], [6]. Figure 5 illustrates different
interaction scripts where the robot finds out the referred
object and answers the human query.

VI. RELATED WORK

Few work has been developed within the robotics field
regarding perspective taking reasoning, which is fundamental
for enhancing social interaction ([8],[9],[10]). Trafton et al.
use both visual and spatial perspective taking for finding
out the referent indicated by a human partner [10]. In [11],
they also design a robot that is able to play hide and
seek a child does. The strategy they model in the robot
is to find those places that are not visible for the human
partner. Berlin et al. [12] present their work focused on using
visual perspective taking skills for learning from a human
teacher. A teacher classifies objects in a given way. The robot
then learns the classification function based on the teacher’s
visual perception of the world. Johnson and Demiris [13]
apply visual perspective taking for action recognition. In
their work, a robot who has complete visual access of
the environment observes another robot with partial access

performing a task. The first robot can recognize the task
performed by the second robot because it is able to reason
about its partial perception. The most significant work for
computing reachability has been introduced by Zacharias et
al. [14], but only from the robot point of view and not the
human, as we do in our work.

The novelty of our work is that we combine (1) different
geometric reasoning mechanisms from both, human and
robot perspective, which allows us to reason about the agent’s
capacities with (2) a symbolic knowledge representation,
which allows us to reason about the agents’ knowledge about
the state of the world.

VII. CONCLUSIONS

We have presented a set of mechanisms to ease interaction
between humans and robots while communicating the robot’s
internal knowledge about the world. More precisely, we have
introduced a model for knowledge representation along with
a geometric reasoning engine that provides symbolic descrip-
tions of geometric relations, as well as agent’s abilities. The
overall system is completely platform independent and has
been integrated in two different platforms.
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