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Abstract This paper presents how extraction, repre-

sentation and use of symbolic knowledge from real-world

perception and human-robot verbal and non-verbal in-

teraction can actually enable a grounded and shared

model of the world that is suitable for later high-level

tasks such as dialogue understanding. We show how the

anchoring process itself relies on the situated nature

of human-robot interactions. We present an integrated

approach, including a specialized symbolic knowledge

representation system based on Description Logics, and

case studies on several robotic platforms that demon-

strate these cognitive capabilities.

1 Grounding Human Interaction Into Robot

Knowledge

A messy table, covered with cardboard boxes, books, video

tapes... Thomas is moving out and is packing everything

with the help of Jido, his robot. “Jido, give me that”,

says Thomas while looking at a box that contains a video

tape. The robot smoothly grasps the tape, and hands it

to him.

While this kind of interaction (Fig. 1) should hope-

fully sound quite familiar in a foreseeable future, our
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Fig. 1 Interacting with the robot in an everyday setup: the
human asks for help in vague terms, the robot takes into
account the human’s spatial perspective to refine its under-
standing of the question.

robots are not yet quite up to the task, neither regard-

ing natural language understanding nor plan-making

and manipulation. To be combined together, those abil-

ities require an unambiguous and shared representation

of concepts (objects, agents, actions...) underlying the

interaction: what are the prerequisites for such a sen-

tence –“Jido, give me that”– to be understood by the

robot, correctly interpreted in the spatial context of the

interaction, and eventually transformed into an action?

The first step is to understand the meaning of the

sentence. To this end, we must acquire the sentence,

convert it into a useful syntactic form (probably through

speech recognition), and understand the semantics of

the sentence, i.e. What is referred by “Jido”? What is

“give”? What is “me”? And “that”?

Working in a situated context, we need to resolve

these semantics atoms, i.e. ground them in the sensory-

motor space of the robot. For instance, “that” is a

demonstrative pronoun that refers in this context to

the object the human is focusing on.
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The next step is to extract and understand the in-

tended meaning of the utterance as thought by the

agent. In our example, Thomas obviously wants an ac-

tion to be performed by the robot. The action parametriza-

tion is conveyed by the semantics attached to the words

and the grammatical structure of the sentence. In our

example, the type of action is given by the verb “give”.

Assuming the robot has some procedural knowledge at-

tached to this symbol, the action type can be considered

as grounded for the robot. We can as well understand

that the recipient of the action is the human, the per-

former is the robot itself, and the object acted upon is

the tape. The recipient, performer and object are three

of the thematic roles [11] that qualify the give action.

They are necessary to fully ground the sentence1.

1.1 Approach

In this work we propose an approach aiming at ground-

ing the interaction with users (Figure 2 illustrates the

general context). To this end, we have developed three

distinct, inter-related cognitive components:

1) Physical environment modeling and spatial rea-

soning (grouped under the term situation assessment):

this component is in charge of building and maintaining

a coherent model of the physical world. This model is

realistic in the sense that it relies on accurate 3D mod-

els of both manipulable objects and humans. It also

has dedicated mechanisms to manage disappearing or

occluded objects. The geometric model is used to com-

pute several spatial properties of the scene that actually

convert the original sensory data into symbolic beliefs,

including relative locations of objects, visibility state,

gestures (such as pointing), etc. Assuming that other

agents are also represented in the model, the same com-

putations are applied to analyze the scene from each

agent’s point of view (i.e. from their perspectives).

2) Knowledge representation and management : the

robot is endowed with an active knowledge base that

provides a symbolic model of its beliefs of the world,

as well as models for each cognitive agent the robot

interacts with. Used in combination with the situation

assessment framework, this proves an essential feature

([31, 20]) to enable perspective-aware grounding of nat-

ural language.

1 This analysis has been inspired on the work of Austin et
al. [2], where this type of sentences correspond to speech acts,
comprising of locutionary act (the meaning), illocutionary (the
intent) and possibly perlocutionary acts (implicit speaker’s ex-
pectation).

Fig. 2 Generic model of cognitive abilities interactions for
grounding

Our platform relies on OWL-DL2 ontologies and

features continuous storage, querying and event trig-

gering over the pool of facts known by the robot.

3) Dialogue processing : the third component includes

natural language parsing capabilities, interactive dis-

ambiguation routines and concept anchoring. We fo-

cused our efforts on three classes of utterances com-

monly found in human-robot interaction: statements

(i.e. new facts the human wants to inform the robot),

orders (or more generically desires) and questions on

declarative knowledge (whose answers do not require

planning or prediction)3.

1.2 Related Work

Our work builds on top of years of work in the artificial

intelligence community around the symbol grounding

issue: we can mention Searle [34] who introduces it with

the Chinese room metaphor, Harnard [14] who coins

the following (slightly paraphrased in the robotic con-

text) definition of symbol grounding: “make the mean-

ings of the meaningless symbol tokens intrinsic to the

robotic system”, Coradeschi and Saffioti [7] who focus

on robotics and define the meaning of anchoring as “the

process of creating and maintaining the correspondence

between symbols and sensor data that refer to the same

physical object” and Ziemke [45] who elaborates on the

need of embodiment for symbol grounding.

2 Web Ontology Language - Description Logics, a decid-
able subset of the first-order logics, http://www.w3.org/TR/

owl2-primer/
3 This would roughly cover the representative (sometimes

referred as assertive) and directive illocutionary acts in
Searle’s [33] classification.

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
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Our contribution relates to two narrower fields: nat-

ural language in embodied interaction contexts and knowl-

edge acquisition and representation in robotic systems.

Processing natural language in situated contexts is

already an established research field. In [31], Roy and

Reiter summarize what they see as the main challenges

to be tackled: cross-modal representation systems, asso-

ciation of words with perceptual and action categories,

modeling of context, figuring out the right granular-

ity of models, integrating temporal modeling and plan-

ning, ability to match past (learned) experiences with

the current interaction and ability to take into account

the human perspective. This list offers an interesting

entry point to evaluate our contribution.

Kruijff et al. provides in [20] an up-to-date survey

of literature on situated human-robot dialogue, focus-

ing on formal representation systems, bi-directionality

of the interaction and context building. They point out

as well that compared to the cognitive psychology com-

munity, the “situated AI” community started only re-

cently to take into account agents’ focus of attention,

perspective and temporal projection abilities.

Dialogue processing in real robots have been ex-

plored by several teams. Brick and Scheutz [6] have

contributions regarding natural language processing in

an incremental way, and how this enables instant back-

channel feedback (like nodding). Hüwel et al. [16] pro-

pose the concept of Situated Semantic Unit : atoms are

extracted from sentences exposing semantic links to

other units. The parser tries to satisfy these links and

rates the semantic interpretation of the sentence. Used

in conjunction with ontologies, their approach offers ro-

bustness to ungrammatical or partial utterances. They

validated the approach with an extensive user-study.

Zender et al. [44] address the generation of referring

expressions (GRE [8]) in situated dialogue for topologi-

cal knowledge. They consider both the reference resolu-

tion and reference description tasks, and rely on OWL-

DL representation and SPARQL4 to extract topological

contexts from their knowledge base.

While mostly implemented on virtual agents, the

GLAIR cognitive architecture by Shapiro and Bona [35]

is an architecture explicitly built to tackle the ground-

ing issue from the percept to the decision. It is a three-

layers architecture: a Knowledge Layer, a low-level Sensori-

Actuator Layer and an intermediate Perceptuo-Motor

Layer that binds the previous two. The knowledge layer

relies on a custom knowledge representation language

(more expressive than first-order logic), and natural

language processing capabilities similar to ours are avail-

able. The GLAIR project has been only demonstrated

4 SPARQL Protocol and RDF Query Language, http://www.
w3.org/TR/rdf-sparql-query/

in a limited set of environments, but exhibits interest-

ing features such as explicit management of contexts

of facts and memory models (long term/short term,

episodic/semantic).

Also worth mentioning, Mavridis and Roy [24] pro-

pose the idea of a grounded situation model which is

an amodal model of the world where different sensing

modalities, including verbal ones (the robot is able to

imagine objects), are merged. Their framework also al-

lows the management of the interaction history (the

human can ask for a past event). They propose an im-

plementation in an environment built on simple entities

(a manipulator arm and colored balls).

In the field of symbolic knowledge processing for

robots, Gunderson and Gunderson [12] introduce the

concept of reification (based on both recognition and

pre-afference) as an intermediate step between pattern

recognition and symbol grounding. Their underlying

storage of knowledge relies on ontologies and bio-inspired

memory models. While sharing similar foundations to

our work, their proposal is based on fairly simple per-

ceptual modalities and does not develop complex sym-

bolic models that could enable human-robot interac-

tion.

Suh et al. [40] develop OMRKF, an ontology-based

reasoning framework for robotics. They tackle the ground-

ing problem by storing low-level facts (like SIFT visual

features) in a layered symbolic architecture that works

well in simple sensori-motor spaces. However this ap-

proach raises concerns regarding scalability and man-

agement of more complex entities or interactions.

Daoutis et al. [9] introduce one of the first com-

plete architectures for grounded human-robot interac-

tion. They successfully bind low-level percepts (includ-

ing view-point independent SIFT based object recog-

nition) to a high-level knowledge representation and

reasoning system. They base their knowledge model

directly on the ResearchCyc ontology (including the

MicroTheories concept), used in combination with the

CycL language. This enables second-order logic mod-

eling and access to a large common-sense knowledge

base.

Beetz et al. [4] proposes a cognitive architecture

called CRAM (Cognitive Robot Abstract Machine) that

integrates KnowRob [41], a knowledge processing frame-

work based on Prolog. Its underlying storage is based

on an OWL ontology, derived from OpenCyc. CRAM

and KownRob have been demonstrated on several real-

world scenarios, where natural language recipes extracted

from Internet had to be translated into plans and exe-

cuted in a kitchen environment, perceived and rebuilt

on-line by the robots. While Prolog offers more flex-

ible modeling (no constraints on the arity of predi-

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
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cate, where Description Logics as used in our work

are limited to binary predicates), it is based on the

closed world assumption (if something cannot be in-

ferred to be true, it is inferred to be false) whereas we

rely on the open world assumption, which is more re-

alistic in real world scenarios. A probabilistic extension

of KnowRob, called ProbCog [17] is also available.

While in principle possible, currently the CRAM archi-

tecture does not provide explicit support for interacting

with humans.

1.3 Contributions

Besides proposing a new integration model for sensor

data, natural language and symbolic knowledge reposi-

tories, our work extends these previous contributions by

tackling more realistic human-robot interactions: less

restricted speech understanding; ability to deal with

complex, partially unknown human environments; and

fully embodied (with arms, head,...) autonomous robots

that manipulate a large range of household objects.

Three specific contributions are presented in this

work: first, we introduce a versatile and light-weighted

knowledge base that models in a formal framework,

based on first-order logics, not only the robot’s own

beliefs but also every other cognitive agent the robot

interacts with. This explicit modeling of other agents’

belief states is used for the interaction and eases the im-

plementation of various advanced cognitive behaviors

like False-Beliefs [22] or interactive object discrimina-

tion.

Second, we have implemented a framework to ex-

tract symbolic facts from complex real scenes. It is

based on a 3D model of the world that the robot builds

on-line by merging different sensor modalities. It com-

putes spatial relations between perceived objects in real-

time and it allows for virtually viewing of the same

scene from different points of view, enabling visual and

spatial agent perspective taking.

Third, the same symbolic knowledge base enables

richer language capabilities for the robot. We propose a

new approach to natural language grounding that is ro-

bust, situated and more generic than what can be found

in previous work on situated language grounding. We

present several examples that include recognition and

semantic validation of thematic roles or disambiguation

based on attention foci.

Communcation between these components is build

as streams of symbolic facts, where knowledge manip-

ulated by the robot is made explicit. This leads us to

the idea of a knowledge-oriented architecture, which is

discussed at the end of the article.

These points highlight some original aspects of a

larger cognitive architecture that has been deployed and

tested on several mobile robotic platforms (including

both humanoid robots and service robots), demonstrat-

ing the versatility and hardware-agnosticism of these

developments.

In the next section we present the ORO (Open-

Robots Ontology server) knowledge base. We present it

first, along with its objectives, since it is the knowledge

hub of the system, used pervasively by other compo-

nents. Section 3 presents SPARK (for SPAtial Reason-

ing & Knowledge), the component that merges percep-

tual information with a coherent geometric model and

builds a symbolic interpretation of the world from the

robot’s point of view, as well as an individual symbolic

model for each agent currently present in the environ-

ment. Section 4 covers in detail the dialogue process-

ing component and its relation with ORO. Section 5

presents three use-cases that were conducted on two dif-

ferent robotic platforms: the Naming experiment, where

a robot anchors new knowledge in its model through

verbal interaction; the Spy Game, where either the user

or the robot tries to guess which object the other player

is thinking of; and a more complex experiment situated

in an everyday setup, where the robot builds models for

several agents and interacts with the users using this

knowledge. Finally, Section 6 concludes and discusses

the work presented in this paper.

2 ORO, a Knowledge Management Platform

2.1 On Knowledge Representation

While knowledge has no general definition that researchers

agree on, for our own purposes we define knowledge as

information interpreted in the cultural and social con-

text of the robot, where information is a statement or an

assertion about the world5. In practical terms, knowl-

edge is made of statements that are contextualized, if

possible synthesized, and limited to a domain of valid-

ity. These three features have important consequences

for the way a knowledge representation and storage sys-

tem must be designed. Let us examine them:

Contextualizing is the ability for a cognitive system to

connect a fact with a cultural context, an interpretive

scope and the set of other facts previously acquired by

the agent.

We call cultural context a broad set of common, gen-

eral facts that are considered widely accepted among

5 In this paper, statements are always triples 〈subject
predicate object〉, i.e. binary relations between entities.
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the interactors (e.g. “bottles may contain water”). This

knowledge is often referred as common-sense knowl-

edge.

By interpretive scope we mean that a concept may

have different interpretations depending on the agent,

the current situation or the time frame the statement

belongs to. Since a fact in one scope can be different

(or even inconsistent) with a fact in another scope (for

instance, one object can be visible for the robot and

invisible for another agent), the underlying knowledge

representation system must properly handle these in-

terpretive frameworks.

Note that the focus of ORO is on enabling such

context to be effectively represented rather than ac-

tually identifying the current context. While several

approaches for building contextualized knowledge are

proposed in this paper (symbolic environment interpre-

tation, perspective taking, grounded natural language

resolution, self-awareness of its own activity), much re-

mains to be done for a robot to actually identify its

current context as well as contexts that may be referred

to.

Synthesis corresponds to the identification of facts and

their components (concepts and predicates) with re-

spect to other facts. For instance, if the robot observes

a human sitting down at a table, and at the same time,

we tell it that “Peter is sitting at the table”, we would

like the robot to infer that “Peter” may be the name of

the human. Synthesis refers to the fact that several, a

priori uncorrelated, facts must be associated with the

same common concept. This process requires the abil-

ity to control the logical consistency of the knowledge

corpus. To continue with the previous example, if we

add the fact that the human that is sitting is a woman,

the synthesis “Peter is the name of the human” is not

valid anymore.

Domain of validity specifies the scope in which infor-

mation is (believed to be) true. It covers several aspects:

temporal, situational and probabilistic. While related

to the previous concept of interpretive scopes, the do-

main of validity addresses the question whether a fact

must be or not considered in a given context. This valid-

ity limitation is not usually carried by the fact itself. In

the previous example, for instance, the robot observes

a human sitting at a table. The fact “a human is sitting

at the table” is true only for a limited period of time,

until the human stands up. This period of time is not

directly accessible (the robot does not know how long

the human plans to stay), but the knowledge represen-

tation must be able to deal with this uncertainty and

should explicitly label this fact as being limited in time.

These three aspects lead us to envisage a knowl-

edge representation system characterized by the follow-

ing abilities:

– represent raw information,

– render a general cultural background, in the form of

common-sense knowledge,

– attach interpretive scopes to new statements,

– add and connect new statements to knowledge al-

ready present,

– store restrictions on the domain of validity of the

knowledge.

Besides, the following active processes would be de-

sirable:

– acquire and maintain knowledge perceived from the

physical world or retrieved from other sources (in-

teraction with other agents, web-based contents,...)

– synthesize facts as much as possible,

– monitor contexts and accordingly manage the valid-

ity of the stored knowledge,

– ensure the logical consistency of the knowledge repos-

itory, and explicit inconsistencies when required6.

This list does not cover all the possible features that

could be exposed by a symbolic knowledge management

system. Bio-inspired memory management (the ability

to forget or reinforce knowledge) or curiosity (the abil-

ity to identify lacking knowledge and actively trigger

behaviours to acquire it –Hawes et al. [15] have con-

tributed in this area with Dora, a robot endowed with

motivation mechanisms to explore unknown regions of

the environment–), to give some examples, could ar-

guably be added to the list. However, this first analysis

sets a convenient reference frame to understand and

evaluate knowledge representation systems, including

the ORO knowledge management system we propose.

2.2 ORO Architecture

The ORO platform [21] is primarily designed as a cen-

tral knowledge storage service implemented as a server

where the robot components can add or query state-

ments at run-time. Figure 3 illustrates the overall ar-

chitecture. The front-end accepts and manages connec-

tions from client components. The clients’ requests are

processed by a set of internal modules: basic operations

on statements, but also higher cognitive and human-

robot interaction related functionalities are available

6 One may argue that the real world is inherently inconsis-
tent. In this article, we make a consistent world assumption,
in order to leverage reasoning capabilities of the first-order
logics. This is supported by the natural tendency of humans
themselves to provide a consistent explanation of their world.
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Fig. 3 Overview of the ORO architecture.

(detailed thereafter). External plugins can also be eas-

ily added. The modules rely on several parallel ontology

back-ends where the knowledge is actually stored.

Knowledge is represented in ORO in the Descrip-

tion Logics formalism (using the OWL-DL –Web Ontol-

ogy Language - Description Logics– language), as RDF

(Resource Description Framework) triples (for instance

〈robot isIn kitchen〉). We use the Jena7 framework as

the underlying library to load and build an in-memory

OWL model. We use it in conjunction with the Pellet8

reasoner to ensure the continuous classification of the

OWL concept graph: at run-time, newly added state-

ments are continuously reasoned about (classified), and

at any time, the server exposes a complete set of state-
ments, both the asserted ones and the inferred ones.

For instance, if 〈socrates type Human〉 and 〈Human subClassOf
Mortal〉 are asserted, the server transparently adds the

inferred statement 〈socrates type Mortal〉, and a later

query retrieving all mortal entities would return socrates

as well. The language of the OWL family make the Open

World Assumption (if a fact can not be inferred as true,

it does not mean that it is inferred to be false), and the

Pellet reasoner honors this assumption as well.

2.3 The OpenRobots Common-Sense Ontology

The first requirement identified in section 2.1 refers to

the modeling of a cultural background, a common-sense

knowledge assumed to be shared by all agents. The

ORO server can be loaded with an initial set of state-

ments which we call the OpenRobots Common Sense

7 http://jena.sourceforge.net/
8 http://clarkparsia.com/pellet/

Ontology. It defines a small set of concepts (and implic-

itly, a vocabulary) that can be used by all the mod-

ules of the robot to unambiguously add or query facts.

Moreover, the same ontology declares rules and logical

properties that are later on used for inference.

The OpenRobots Common Sense Ontology defines a

small set of classes (56 are currently defined) and predi-

cates (60 are currently defined) focused on concepts use-

ful for human-robot interaction. It includes both very

broad categories like SpatialThing, Event or Action, and

much more concrete concepts as Table, Book or colors.

Available predicates allow us to describe the state of

the agents and the world with relations like isOn, sees,

currentlyPerforms, etc.

Several significant projects are trying to provide such

a machine-processable repository of common sense facts

produced by humans (the OpenMind project9, for in-

stance). These knowledge bases are valuable but remain

difficult to use in a pervasive way because of both their

incompleteness and the lack of good connections with

underlying, unambiguous concepts.

Our common sense ontology is closely aligned with

the open-source OpenCyc10 upper ontology. OpenCyc

defines a large taxonomy of concepts and semantic re-

lationships between concepts that are used in several

other projects (WordNet, DBpedia). This potentially

eases the exchange and addition of knowledge from these

other sources. Moreover, it also enables knowledge ex-

change with other robots (for instance, the works pre-

viously mentioned by Daoutis and Tenorth rely on the

same Cyc concepts).

2.4 Reasoning and Dynamic Knowledge Structuring

As previously mentioned, ontologies in ORO are written

in OWL. The Pellet reasoner supports most of the OWL

constructs and allows several types of reasoning:

– inheritance

– property axioms

– entailments based on predicates’ domain and range,

– cardinality constraints (including allValue, someValue,

hasValue),

– property characteristics (symmetry, transitivity)

– class restrictions like:

Bottle ≡ Artifact that (hasShape value cylinderShape)11

– set operations like:

Color ≡ unionOf(blue, green, orange, black...)

9 http://www.openmind.org/
10 http://www.opencyc.org
11 This example uses the Manchester syntax, http://www.w3.
org/TR/owl2-manchester-syntax/

http://jena.sourceforge.net/
http://clarkparsia.com/pellet/
http://www.openmind.org/
http://www.opencyc.org
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
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– generic SWRL (Semantic Web Rule Language) rules

like:
looksAt(?agt, ?obj) ∧ pointsAt(?agt,?obj)

⇒ focusesOn(?agt, ?obj)

We provide in ORO accessors to query, add or re-

move all these properties and restrictions (except the

SWRL rules) at run-time. This allows knowledge intro-

spection and enables the robot to alter its own knowl-

edge structures (the so-called T-Box model) during its

life-time by adding new constraints and properties to

classes and predicates. The Naming experiment (sec-

tion 5.1) gives a simple example of such knowledge re-

structuring.

2.5 ORO Features

Besides storing and reasoning about knowledge, we have

developed in ORO several features to manage knowl-

edge at higher level:

2.5.1 Base Functionalities

ORO offers an extended set of methods to process facts

at the triples level, including:

– statement (i.e. RDF triples) insertion, removal, up-

date,

– pattern-based statements removal,

– pattern-based queries (for instance, 〈 * isOn table〉,
which means “return me all objects on table”) and

filters (for instance, weight < 150.0),

– consistency check, insertion of statements with con-

sistency constraint (only if the new fact does not

lead to inconsistencies),

– fast concept lookup, with possible multi-lingual sup-

port (through the @lang XML annotation, labels of

concept can be translated, and specific translations

can be queried for),

– standard SPARQL queries.

While these basic functionalities enable the incre-

mental construction (and exploitation) of a consistent

knowledge model, the Common Sense Ontology helps

build assertions that are related to previous ones by

offering a predefined vocabulary.

2.5.2 Representation of Alternative Cognitive Models

As pictured in Figure 3, ORO stores independent cog-

nitive models for each agent it interacts with. When

ORO actually identifies a new agent (or infers that some

instance is an agent), it automatically creates a new,

separate, in-memory OWL model for that agent. Thus,

different robot components, like supervision or situa-

tion assessment, may then store the agents’ beliefs in

separate models. All knowledge processing functions in

the robot’s primary model are equally available in ev-

ery agent’s model, which allows us to store and reason

on different (and possibly globally inconsistent) models

of the world.

Each of these models is independent and logically

consistent, enabling reasoning on different perspectives

of the world that would otherwise be considered as glob-

ally inconsistent (for instance, an object can be visible

for the robot but not for the human. This object can

have at the same time the property isVisible true and

isVisible false in two different models).

This feature actually allows us to consider the robot

to be endowed with a theory of mind [32]: the robot can

explicitly model the belief state of its interactors, open-

ing new possibilities for the control architecture. In sec-

tion 5.3.2 we present an example of how we use this fea-

ture to make sense of user sentences from his/her point

of view. Moreover, these multiple models can be viewed

as different interpretive scopes, allowing the robot to

interpret the same reality from different points of view.

2.5.3 Categorization

We have implemented several algorithms (common an-

cestors, computation of the best discriminant [29]) to

help the robot cluster a set of concepts based on their

symbolic similarities. One particular application of these

functions is discrimination. While interacting with a

user, the robot quite often needs to clarify an ambi-

guity produced by its human partner. For instance, a

user may refer to a “bottle” where two bottles are cur-

rently visible. Discrimination routines can identify pos-

sible (symbolic) differences (e.g. the color or the size

of the bottles) that permit the robot to ask an accu-

rate question to the user in order to solve the ambi-

guity. This discrimination can occur from the robot’s

perspective or from a specific agent’s perspective. Us-

age of these categorization abilities are illustrated in

Sections 4.3 and 5.2.

2.5.4 Memory Profiles

We have designed a simplified bio-inspired memory model

to store statements in different memory profiles. These

include short term memory and long term memory.

Each profile is characterized with a lifetime, which is

assigned to the stored facts. When the lifetime of a fact

expires, ORO automatically removes it.
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2.5.5 The Events Framework

Lastly, ORO allows external modules to be triggered

when specific events occur. For instance, when a logi-

cal sentence becomes true or false, or if a new instance

of a certain class is added. One immediate application

is reactive supervision: a component could for instance

subscribe to events of kind [?agent isVisible true, ?agent

type Human]. As soon as the perception layer detects a hu-

man in the robot’s field of view and accordingly updates

the knowledge base, the supervision component would

be triggered back. The event framework also takes ad-

vantage of the inference capabilities of ORO. Thus an

event can be indirectly triggered if its triggering condi-

tions can be inferred to be true.

The next sections describe how symbolic knowledge

is actually produced and added to ORO.

3 Geometric Reasoner for Situation Assessment

Anchoring perceptions in a symbolic model requires

perception abilities and their symbolic interpretation.

In this section we present SPARK (SPAtial Reason-

ing & Knowledge [36]), a situation assessment reasoner

that generates relevant symbolic information from the

geometry of the environment with respect to relations

between objects, robots and humans. Moreover, the no-

tion of Perspective Taking [10, 42] is employed at the

heart of the reasoner to provide the robot with the abil-

ity to put itself at the human’s place and to reason

about the world from different perspectives.

As mentioned in the introduction, this paper does

not focus on the sensor-level perception. We rather as-

sume that the perception of the humans and the objects

is provided as a list of unique identifiers with associated

3D meshes and 6DOF poses.

3.1 Capabilities

There are a number of common properties for a robot

and a human related to their capabilities in a given

situation: they can both reach, grasp, look at, point at,

etc. In our context, we group robots and humans into a

single category. Thus, we define agents as entities that

can act in the environment and manipulate it. In this

work we focus on the following capabilities from each

agent’s perspective12:

– Sees: An important ability to know about an agent

is to predict “what it can see”, i.e. what is within

12 Note that each of the capabilities described are computed
from each agent point of view, and therefore, also stored in
different models in ORO for further use at the decisional level.

its field of view (FOV). A robot being able to com-

pute this information can then act accordingly. An

example would be a clarification scenario where the

human is searching for an object and the robot is

able to infer that he/she is looking for the one that is

not visible (otherwise the user would not be search-

ing for it). In Figure 4a the field of view of a person

is illustrated with a grey cone (broader one). While

he is able to see the two small boxes on the table in

front of him, the big box on his right is out of his

FOV, and therefore, he is not able to see it.

– Looks At : this relation corresponds to what the agent

is focused on, i.e. where its focus of attention is di-

rected. This model is based on a narrower field of

view, the field of attention (FOA). Figure 4a shows

the field of attention of a person with a green cone

(narrower one). In this example only the grey box

satisfies the looksAt relation.

– Points At : verifies whether an object is pointed at

by an agent. This relation is particularly useful dur-

ing interaction when one of the agents is referring

to an object saying “this” or “that” while pointing

at it. Section 5.3.3 describes in more detail the com-

bination of both sources of information (verbal and

non-verbal).

If a big object occludes a smaller one, and an agent

is pointing at them, the outcome of the evaluation

will result only in one relation, i.e. 〈agent 01 pointsAt

object 01〉 since the small one is not visible to the

agent. On the contrary, if the small object is in front

of the big one, then both objects will satisfy the

relation, which may generate an ambiguity (which

object the agent refers to?) that should be solved

through higher level reasoning (e.g. context analysis

or clarification through verbal interaction).

– Reachable: it allows the robot to estimate the agent’s

capability to reach an object, which is fundamental

for task planning. For example, if the user asks the

robot to give him/her an object, the robot must

compute a transfer point where the user is able to

get the object afterward. Figure 4b shows different

reachability postures for each object on the table.

In the example, the bottle and the box are both

reachable for the human, but the teddy bear is too

far. Instead, from the robot’s perspective, the teddy

bear is reachable for it, while the bottle is not.

While the first three relations (sees, looksAt and

pointsAt) are computed through a model based approach,

the latter one is based on the Generalized Inverse Kine-

matics with pseudo inverse method [26, 3] to find a col-

lision free posture for the agent where its end-effector

is at the center of the object within a given tolerance.
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(a) (b) (c)

Fig. 4 (a) Field of view (FOV) and the field of attention (FOA) of the human. (b) Different reaching postures for the human.
(c) Spatial relations between two objects: A) isOn relation, B) isIn relation, and C) isNextTo relation.

The details of these computations are out of the scope

of this article.

3.2 Locations

One way of referring to object’s positions is based on

human’s symbolic descriptors, instead of using their

precise position. In fact, in many cases, this information

is the most precise information available since humans

do not store the numeric coordinates of objects. These

type of descriptors have been studied in the context of

language grounding ([27, 23, 28, 18, 5]). In this work

we focus on the following relations which are computed

with respect to the position of the agents and the ob-

jects:

– Location according to an agent : The predicate isLocatedAt

represents spatial locations between agents and ob-

jects. For example we say “it is on my right, on your

left, ...” We compute these spatial locations by di-

viding the space around the referent (an agent) into

n regions based on arbitrary angle values relative to

the referent orientation. For example, for n = 4 we

would have the space divided into front, left, right

and back. Additionally, two proximity values, near

and far, may also be considered. The number of re-

gions and proximity values can be chosen depending

on the context where the interaction takes place.

– Location according to an object : We can also refer

to object locations with respect to other objects in

the environment, such as above, next to, in, etc. In

this work we compute three main relations based on

the bounding box and center of mass of the objects

(Figure 4c):

– isOn: computes if an object O1 is on another ob-

ject O2 by evaluating the center of mass of O1

according to the bounding box of O2.

– isIn: evaluates if an object O1 is inside another

object O2 based on their bounding boxes BBO1

and BBO2
.

– isNextTo: indicates whether an object O1 is next

to another object O2. We cannot use a simple

distance threshold to determine if two objects

are next to each other since the relation is highly

dependent on the dimensions of the objects. For

instance, the maximum distance between large

objects (e.g. two houses) to consider them as be-

ing next to each other is much larger than the

maximum distance we would consider for two

small objects (e.g. two bottles). Thus, the rela-

tion between the dimensions and the distances

of the objects are taken into account.

To ensure the different agent models are up-to-date,

all these properties are always computed on-line, each

time the current state of the world changes.

SPARK can be compared to the Grounded Situation

Model (GSM) introduced by Mavridis and Roy [24] in

the sense that they both provide an amodal physical

representation of the world used as a mediator between

the sensor space and symbolic models. They have how-

ever different features: while GSM enables representa-

tion of time and imaginary objects (whose existence is

hinted by verbal assertions from a human, also called

presupposition accomodation), SPARK offers a richer

3D model that enables the computation of several spa-

tial relationships between objects and an effective im-

plementation of perspective taking capabilities.

4 The Natural Language Grounding Process

Verbal interaction with human presents two categories

of challenges: syntactic ones, and semantic ones. The

robot must be able to process and analyze the structure

of human utterances, i.e. natural language sentences,
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Fig. 5 The Dialogs module has three main steps: the pars-
ing, the interpretation and the verbalization. The interpre-
tation module is responsible for both the resolution and the
semantic content analysis and translation.

and then make sense of them. As stated in the intro-

duction, we process three categories of sentences: state-

ments, desires and questions that can be answered from

the declarative knowledge present in the robot knowl-

edge base (a choice similar to the Behaviour Cycle in

the GLAIR architecture [35]). In our work, the ground-

ing process of the human discourse consists in extract-

ing either the informational content of the sentence to

produce statements or its intentional content (i.e. per-

formative value) to collect orders and questions. We do

not claim any contribution to the field of computational

linguists (see [20] for a survey of formal approaches to

natural language processing in the robotics field). Our

main contribution here is the grounding (we call it res-

olution) of concepts involved in the human discourse

through the robot’s own knowledge.

To this end we have developed a dedicated module

called Dialogs that processes human input in natural

language, grounds the concepts in the robot’s knowl-

edge and eventually translates the discourse in a set of

queries or declarative OWL/RDF statements. Figure 5

shows the Dialogs module architecture. The user’s in-

put is first pre-processed. For instance, I’m constructs

are expanded into I am and then parsed. The parser

is a custom-made, rule-based (i.e. grammar-free) tool

that extracts the grammatical structure from the user’s

>> IMPERATIVE
VP: remember (present simple)

SUBSENTENCE (aim: that)
NP: I
VP: want (present simple)

direct objects:
NP: you

secondary VP: give ()
direct objects:

NP: my nice blue bottle
indirect objects:

NP: me

Fig. 6 Raw output of the Dialogs parser after processing the
sentence: “remember that I want you to give me my nice blue
bottle.” Nominal groups are not grounded yet.

sentence. Figure 6 shows an example of the raw output

of the parser for a moderately complex sentence.

The output of the parser is then sent to the interpre-

tation module, the core of the component. Interpreta-

tion consists in three distinct operations: the sentence

resolution (concepts grounding), the content analysis

(what is the intent of the utterance: information, ques-

tion or desire) and the statement building (translation

into RDF statements).

The sentence resolution has three steps: (i) pro-

nouns and anaphora are replaced by the correct speaker

ID and the ID of the last object referred to (extracted

from the dialogue history) respectively, (ii) nominal

groups are disambiguated and grounded (noun phrase

resolution), and (iii) verbal groups are resolved and

their associated thematic roles are retrieved (verb phrase

resolution).

Algorithm 4.1: Resolution(sentence, currentSpeaker)

G ← ParseNominalGroups(sentence)
for each g ∈ G

do



D ← GenerateDescription(g) (1)
candidates← Ontology.Find(D) (2)
if |candidates| = 0

then

{
output (Couldn’t resolve the group!)
exit

else if |candidates| = 1
then id← candidates[0]

else


if Ontology.CheckEquivalent(candidates)
then id← candidates[0]

else id← Discrimination(candidates)(3)
Replace(g, id, sentence)

As represented in Figure 5, interpretation tightly re-

lies on the communication with the knowledge base. All

the concepts the robot manipulates are stored in the

ontology server and retrieved through logical queries,

except for the verbs that are currently stored in a ded-

icated library (the action library in the diagram).

In order to better understand the overall process of

the Dialogs module and its relation with ORO, we
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Initial knowledge human 01 Human input

〈banana 01 type Banana〉 “The yellow banana is big!”
〈banana 01 hasColor yellow〉

Generated partial statements Newly created statements

〈?obj type Banana〉 〈banana 01 hasSize big〉
〈?obj hasColor yellow〉
⇒ ?obj = banana 01

Fig. 7 First example: content extraction. “⇒” represents the
output of the ontology server.

next describe the different steps of the approach based

on three examples. In these examples we assume that

some initial facts are present in the knowledge base (sec-

tion 6.2.1 discusses how the initial knowledge can be

acquired), both in the robot’s own model and in the

human’s model. Since the robot tries to ground a hu-

man utterance, all queries are sent to the human model

in order to interpret it from the human perspective.

4.1 Informational Content Extraction

Figure 7 shows a first example of human discourse ground-

ing and the extraction of informational content. We as-

sume that the robot knowledge base only contains two

initial statements in the human model. The user asserts

a new one: “The yellow banana is big!”. We first want

to match the nominal group The yellow banana to an

already known concept (algorithm 4.1), and second to

translate the property is big into a predicate (hasSize)

to state its semantics.

To resolve the nominal group The yellow banana a

set of partial statements that describe the concept is

generated based on the grammatical parsing of the sen-

tence (algorithm 4.1(1)). The parsed tree of each nom-

inal group is translated into statements based on a set

of rules. In the example, a banana (〈?obj type Banana〉)
that is yellow (〈?obj hasColor yellow〉)13. Based on these

partial statements a SPARQL query is sent to the on-

tology server to retrieve possible instances that match

the description (algorithm 4.1(2)).

In this first simple case, the concept banana 01 is un-

ambiguously matched (since there is only one possible

banana) and returned. Finally, we can now add the new

information provided by the human, i.e. the new state-

ment 〈banana 01 hasSize big〉, to the human model in the

ontology server.

13 Predicates like hasColor or hasSize that bind banana 01

to adjectives are extracted from a predefined database of
[Predicate→ AdjectiveCategory], and falls back on the generic
hasFeature predicate if the adjective is not known.

Initial knowledge human 01 Human input

〈banana 01 type Banana〉 “Give me the banana.”
〈banana 01 hasColor yellow〉

Generated partial statements Newly created statements

〈?obj type Banana〉 〈human 01 desires sit a3〉
⇒ ?obj = banana 01 〈sit a3 performedBy myself〉

〈sit a3 actsOnObject banana 01〉
〈sit a3 receivedBy human 01〉

Fig. 8 Second example: processing an order.

4.2 Intentional Content Through Verb Resolution

The sentence in the first example is built with the state

verb be at indicative. Let us examine a different exam-

ple with an action verb at imperative mode (an order):

“Give me the banana”. The process is described in Fig-

ure 8.

In order to capture the intentional content of a sen-

tence (for example, an order) we need to retain the

semantics of the verb and its complements. Thematic

roles allow for semantically linking a verb to its com-

plements. There is no general agreement amongst lin-

guists on a comprehensive list of thematic roles. The

amount and the granularity of roles varies a lot in the

literature [13]. We thus use a small set of them, which

matches the relations the robot can actually achieve

(we discuss possible extensions in the conclusion). For

instance, in the second example, the verb give has three

thematic roles: performedBy, actsOnObject and receivedBy.

The list of actions the robot can plan for (currently

take, place, give, show, hide and move) along with pos-

sible synonyms (for example, to pick is set as a syn-

onym of to take) and their associated thematic roles
are stored in a predefined library of actions. For each

action we identify and store: the role of the subject in

the sentence (always performedBy); the role of the direct

object (for instance, actsOnObject); and the role of each

of the indirect objects with their optional prepositions

(for instance, receivedBy)14. Moreover, through the on-

tology we check that each holder of a role is semantically

consistent. For instance, the action Give must have a

manipulable physical item (Artifact) as direct object.

Thus, if the concept the robot finds for the thematic

role actsOnObject cannot be inferred to be an artifact,

the robot goes back to the human saying it does not

understand.

This second example also shows the pronoun refer-

ence resolution: “me” is replaced by the id of the current

speaker, while “you” is replaced by myself (myself always

14 Note that in example 2, “give me the banana”, the pro-
noun “me” appears before “banana”, while it is an indirect
complement — “give it to me”. The parser correctly handles
these cases.
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Initial knowledge model of human 01

〈banana 01 type Banana〉
〈banana 01 hasColor yellow〉
〈banana 02 type Banana〉
〈banana 02 hasColor green〉

Human input

“The banana is good.”

Generated partial statements

〈?obj type Banana〉
⇒ ?obj = [banana 01, banana 02]

Discrimination process

discriminate([banana 01, banana 02])

⇒ ?hasColor = [yellow, green]

Robot output speech

“The yellow one or the green one?”

Human answer

“The green one.”

Extended human input

“The green banana is good.”

Generated partial statements

〈?obj type Banana〉
〈?obj hasColor green〉
⇒ ?obj = [banana 02]

Newly created statements

〈banana 02 hasFeature good〉

Fig. 9 Ambiguity resolution: in this example, “banana” can
refer to the yellow banana (banana 01) or the green one
(banana 02). Discrimination routines handle the disambigua-
tion process.

represents the robot itself). When present, anaphoras

(references to previous concepts like “give me the ba-

nana, I like it.”) are also resolved in the same step.

Once the sentence is completely resolved and trans-

lated into a formal representation (a human desire in

this example15), we store it in the ontology server. The

robot’s decisional/executive layers can then decide whether

to execute the order or not.

4.3 Informational Content Extraction Requiring

Clarification

This last example (Figure 9) shows the resolution of

ambiguous concepts. In this case the user refers to “the

banana” while two instances of the Banana class exist

in the ontology. The robot needs to find out to which

instance the user is actually referring to. To this end,

disambiguation routines (algorithm 4.1(3), see [29] for

details of the routines) find differences between the in-

stances (in the example, one banana is yellow while the

other one is green) and build a sentence through the

15 Orders are here represented as human desires: the human
desires a specific new situation.

verbalization module to ask the user a closed question

that will help clarify the ambiguity: “Is it yellow or

green?” The user’s answer is parsed and merged with

the previous sentence. The resulting, augmented, sen-

tence (“The green banana is good”) goes again through

all the interpretation steps. This process is repeated un-

til no ambiguities arise. In the example, the banana 02 is

finally returned.

Several other strategies are used in parallel to dis-

ambiguate concepts without having to ask for more in-

formation to the human:

– Which objects are currently visible to the human?

If only one of them, then it is probably the one the

user is talking about.

– Did a previous interaction involved a specific object

that would still be the subject of the current sen-

tence?

– Is the user looking or pointing at a specific object?

While no examples involving questions have been

detailed, factual wh- questions and polar (yes/no) ques-

tions can be processed in a similar way by Dialogs.

For instance, a question like “What is on the table?”

is grounded (to extract the relation isOn and to find

what table refers to) and transformed into the following

kind of query: find ?var [〈?var isOn table1〉]. Answers

are converted back to a full sentence by the verbaliza-

tion module, and uttered to the human.

5 Experiments

This section presents several experiments where the dif-

ferent features of our approach are represented. The ex-
periments have been conducted on two different plat-

forms: the Rosie manipulator from the Technical Uni-

verstiy of Munich, a dual-arm, holonomic service robot,

running the ROS16 middleware; and the Jido robot [1]

from LAAS-CNRS, a similar, single-arm, service robot,

running the LAAS’s Genom/pocolibs stack. Both plat-

forms share the use of ORO, the ontology server de-

scribed in this work.

5.1 Naming Experiment

The Naming task uses ORO to anchor perception into

the robot’s knowledge through interaction with the user.

This task has been implemented on the Rosie robot at

TU Munich.

The robot selects an unknown object from the table,

shows it to the user, and asks about its name and type

16 Robotic Operating System, http://www.ros.org

http://www.ros.org
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(a) (b)

Fig. 10 (a) Rosie, looking for objects it may know, and (b)
view from Willow Garage’s RViz. The clusters of point are
given a unique identifier by the perception module. This al-
lows the supervision module to create the link between the
physical objects and their symbolic representation in ORO.

(Figure 10). The user interacts with the robot through

a dedicated bridge, allowing him/her to chat with the

robot with a standard Jabber instant messaging client.

Figure 11 shows a chat session with Rosie performing

the naming experiment. The human describes the ob-

ject until the robot recognizes a type it already knows.

More precisely, the robot recursively asks the human

for the categories the object belongs to until reaching a

known one. At this point, the robot is able to connect

the new object information to already known concepts.

Therefore, the robot accurately anchors perception in

its symbolic model and it is able to reason about it. The

learning process starts over again with each unknown

object. To further exploit the knowledge reasoner in

this experiment, we ask the robot which object does

not belong to a typical breakfast table, i.e. we ask for

the odd objects. In this case, it corresponds to objects

that are neither of type Tableware nor Food.

The supervision module (cram17 [4]) automatically

updates the ORO server whenever an object enters or

leaves the field of view. Therefore, the integration of

ORO can be seen as an extension of the robot’s belief

state that not only contains abstract identifiers of the

internal object representation used in plans, but also

the semantics and roles of objects in the scenario.

5.2 Spy Game Experiment

This game is based on the traditional children game

“I Spy”. The idea is to discover the object or concept

17 cram (Cognitive Robotic Abstract Machine) is a RPL-
derived framework for rapid development of cognitive robot
control programs we currently develop.

rosie Servus! The Bavarian robot is up and fit!
rosie What is the name of the white cluster on the table?

human “Rosie’s mug”
rosie [〈obj 01 label "Rosie’s mug"〉 added]

What kind of object is “Rosie’s mug”?
human Mug
rosie [〈obj 01 type Mug〉 added]

What is a Mug?
human Tableware
rosie [〈Mug subClassOf Tableware〉 added. Rosie already

knows about Tableware (it belongs to the common-

sense ontology), so the description of this object ends.]
(...)

rosie What is the name of the black cluster on the table?
human “my laptop”
rosie What kind of object is “my laptop”?

human Computer
rosie What is a Computer?

human Artifact
rosie Do you want me to learn more objects?

human no
rosie These objects are odd: “my laptop”

Fig. 11 Transcript of a Jabber session with the robot Rosie.

(a) (b)

Fig. 12 Spy game scenario: (a) Real environment and (b) 3D
environment model, viewed in SPARK.

one of the participants is thinking of by asking ques-

tions such as: “Is it green? Is it a machine? Is it on

your left?”, etc. When playing, children exploit their

knowledge about the world while categorizing and de-

scribing objects through useful discriminants that will

allow them to find out the answer as fast as possible

while including perspective taking abilities [25].

The scenario for this game (Figure 12) consists on

a face-to-face interaction where the human thinks of

an object present in the environment, while the robot

queries the human until either discovering the object

or giving up [30]. The game starts with the human user

giving a first hint (communication is done through a

keyboard and screen), allowing the robot to start the

search filtering those objects that fulfill this first de-

scription. Based on this subset, ORO provides a de-

scriptor (or set of descriptors) that allows maximum

discrimination among objects in the subset. The robot

queries the user about the value of the descriptor (or

the most discriminant among the set of descriptors) and

with this new information, the current subset of objects
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human It is a tableware.
jido [retrieve possible objects: coke-bottle, yellow-

bottle, orange-bottle, cup-with-handle]

[keep visible objects: coke-bottle, yellow-bottle,
cup-with-handle]

[obtain discriminants: type, color.]

Which type of object it is: bottle or cup?
human Bottle.

jido [obtain possible objects: coke-bottle, yellow-

bottle.]
[obtain discriminants: color.]

What color is the object: red or yellow?
human Red.

jido [obtains possible objects: coke-bottle.]

The object is the Coke bottle!

Fig. 13 Example of the robot playing Spy game.

is filtered again. The process is repeated until either

obtaining a single object that fulfills all the descriptor

values, or failing (i.e. no object found).

We have integrated the game on the LAAS-CNRS

Jido robot. Objects are identified through a tag-based

vision approach18 and motion capture is used for hu-

man tracking. Their descriptions regarding categories

(type of object) and features (color, shape) are manu-

ally given in advance. Spatial relationships (front, back,

left, etc, and in, on and next to) and visibility (only

visible objects for both agents can be considered in the

game) are automatically computed on-line by SPARK.

Figure 13 shows an example of a round game.

5.3 Moving to London Scenario

In order to illustrate some of different reasoning abilities

of the robot presented in this paper, we have designed

the following daily life situation. Tom and Jerry are

moving to London, so they are packing things in boxes.

The scenario takes places in the living room, where Jido

is observing while they move things here and there. To

assess the reasoning abilities of the robot they ask Jido

for information (entered through keyboard). Ideally, the

robot should perform actions when required (e.g. hand

an object when asking “give me...”). However, since it is

out of the scope of this work, we do not include any mo-

tion from the robot’s side. Similar to the Spy Game sce-

nario, perception of objects is done through a tag-based

system and humans are detected through motion cap-

ture. We next describe in detail three situations where

we can follow the internal robot’s reasoning and the

interaction with the users.

18 ARToolKit: http://www.hitl.washington.edu/artoolkit/

5.3.1 Initial Situation Assessment

First Tom enters the room with some of the things they

need to pack: a toolbox and two videos. He leaves one

of the video tapes (“Jido-E”) inside one of the boxes

(the cardboard box), and the other one (“Lord of the

Robots”) on the table. We next describe how the situ-

ation assessment takes place at each step, i.e. how the

ontology is updated with the information obtained from

the geometric reasoner SPARK. The initial information

in ORO corresponds to:

〈table type Table〉 〈Tom type Human〉
〈cardBoardBox type Box〉 〈Jerry type Human〉
〈toolbox type Box〉 〈videoTape1 type VideoTape〉
〈videoTape2 type VideoTape〉 〈videoTape2 label "Jido-E"〉

〈videoTape1 label "Lord of the Robots"〉

SPARK detects that there is a cardboard box on the

table. It thus sends the fact to ORO:

〈cardBoardBox isOn table〉

Tom enters carrying several objects (Figure 14a) and

places them around. Then he leaves. (Figure 14b). The

following facts are computed and sent to ORO:

〈toolbox isOn table〉 〈toolbox isNextTo videoTape1〉
〈videoTape1 isOn table〉 〈videoTape2 isIn cardBoardBox〉

〈videoTape1 isNextTo toolbox〉

5.3.2 Implicit Disambiguation Through Visual

Perspective Taking

Tom enters the room again while carrying a big box

(Figure 1). He approaches the table and asks Jido to

handle him the video tape: “Jido, can you give me the

video tape”. The Dialogs module queries the ontology

to identify the object the human is referring to:

〈?obj type VideoTape〉

There are two video tapes in the scene: one on the table,

and another one inside the cardboard box. Thus, the

knowledge base returns both:

⇒ ?obj = [videoTape1, videoTape2]

However, only one is visible for Tom (the one on the

table). Thus, although there is an ambiguity from the

robot’s perspective (since it can see both video tapes),

based on the perspective of its human partner it infers

that Tom is referring to the video tape on the table,

and not the one inside the box which is not visible from

his view. Therefore, non-visible objects are removed ob-

taining:

http://www.hitl.washington.edu/artoolkit/
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(a) (b) (c)

Fig. 14 Situation assessment during initialization (before (a) and after (b) placing the objects on the table). In each image the
snapshots correspond to: real environment (top-left sub-image); processed image to identify the tagged objects (bottom-left
sub-image); and the 3D environment (right sub-image).(c) Jerry asks Jido for the content of the box while pointing at it.

Robot’s beliefs about itself (robot’s model):
〈videoTape1 type VideoTape〉
〈videoTape1 isOn table〉
〈videoTape1 isVisible true 〉
〈videoTape2 type VideoTape〉
〈videoTape2 isIn cardBoardBox〉
〈videoTape2 isVisible true 〉

Robot’s beliefs about Tom (Tom’s model):
〈videoTape1 type VideoTape〉
〈videoTape1 isOn table〉
〈videoTape1 isVisible true 〉
〈videoTape2 type VideoTape〉
〈videoTape2 isIn cardBoardBox〉
〈videoTape2 isVisible false 〉

Table 1 Robot’s beliefs about itself and its human partner.

?obj = [videoTape1]

Since only one object is available now, the robot

infers that the human refers to it and can eventually

execute the command, i.e. give it to the human. Al-

ternatively, the robot could first verify with the hu-

man whether that was the object being referred to be-

fore proceeding to execute the action. Table 1 lists the

robot’s beliefs about itself and its human partner in-

volved in this situation.

5.3.3 Explicit Disambiguation Through Verbal

Interaction and Gestures

In this last situation Jerry enters the living room with-

out knowing where Tom had placed the video tapes.

So he first asks Jido: “What’s in the box?”. Before the

robot can answer the question it has to figure out which

box Jerry is talking about. Similar to the previous sit-

uation, there are two available boxes:

〈?obj type Box〉
⇒ ?obj = [cardBoardBox, toolbox]

However both are visible and the cognitive ambiguity

resolution cannot be applied. The only option is to ask

Jerry which box he is referring to19: “Which box, the

toolbox or the cardboard box?” Jerry could now sim-

ply answer the question. Instead, he decides to point

at it while indicating: “That box” (Figure 14c). The

robot’s perception identifies the cardBoardBox as be-

ing pointed at and looked at by the human and up-

dates the ontology with this new information using a

rule available in the commonsense ontology:

〈Jerry pointsAt carboardBox〉, 〈Jerry looksAt carboardBox〉
→ 〈Jerry focusesAt carboardBox〉

In the meantime, the Dialogs module is processing

the human verbal input. When trying to resolve the

reference “that” it is able to merge20 both sources of

information, verbal and gestural, to distinguish the box

Jerry refers to:

〈Jerry focusesAt ?obj〉
⇒ ?obj = [cardBoardBox]

Finally, Dialogs queries the ontology about the

content of the box and the question can be answered:

“Jido-E”. Note that the object’s label is used instead of

its ID. This way we enhance interaction using familiar

names given by the users:

〈?obj isIn cardBoardBox〉
⇒ ?obj = videoTape2

At this point Jerry wants to know where the other

video tape is, and that is exactly what he asks Jido:

“And where is the other video tape?”. In this occasion,

the Dialogs module is able to interpret that Jerry is

not referring to the video tape which they were just

talking about, but to the other one:

19 Note that Jerry is using the definite article the: the robot
has to determine which box is relevant. Dialogs supports
other kinds of quantification (existantial – some –, universal
– all – , explicit cardinality), as expressed by the combination
of definite/indefinite and singular/plural forms of articles.
20 Due to synchronization issues, the user should perform
the gesture (pointing at) before answering the robot’s ques-
tion and maintain it until the resolution process takes place.
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〈?obj type VideoTape〉
〈?obj differentFrom videoTape2〉

⇒ ?obj = [videoTape1]

Since there is only one possible “other” video tape

(there are only two video tapes in the scene), it can

directly answer Jerry: “The other video tape is on the

table and next to the toolbox.”

〈videoTape1 isOn table〉, 〈videoTape1 isNextTo toolbox〉

6 Conclusion

6.1 Towards an Event-Driven, Knowledge-Oriented

Architecture for Personal Robotics

In this paper, we have studied knowledge streams be-

tween three components: (1) ORO, an ontology-based

knowledge server that stores and maintains classified

RDF statements produced by other modules in agent-

specific models and allows information to be easily re-

trieved, either through queries or via an event system;

(2) SPARK, the grounded, human-aware 3D model of

the environment that performs all the spatial reason-

ing within our architecture, including reasoning involv-

ing motion planing (to compute reachability of objects)

and perspective taking, and (3) Dialogs, a natural

language processor that performs simple grammatical

parsing of English language, grounds the semantic con-

tent of the utterance (if necessary, also interacts with

the user to disambiguate), and eventually generates a

RDF representation of the sentence.

These components, combined with modules dedi-

cated to symbolic supervision and task planning (these

modules are outside of the scope of this article), com-

pose an architecture that we call knowledge-oriented :

– Knowledge is explicitly stored in one central and

consistent repository of facts, accessible by all mod-

ules.

– Knowledge is represented in a strict formalism (OWL

statements) and with a clearly defined vocabulary

(stated in the commonsense.oro.owl ontology).

– The first two points enable both a loosely-coupled

architecture where modules can very easily be re-

moved or replaced by other ones as long as they

share the same semantics (modules are defined by

the knowledge they produce),

– and a symbolic reactive, event-driven approach to

supervision. By managing events at the same level

as the reasoner, we take full advantage of the infer-

ence abilities of ORO to trigger events whose true

conditions can be inferred.

– Finally, this architecture allows for the combination

of very different knowledge modalities in a single ho-

mogeneous environment, bringing mutual benefits

to components. For instance, the dialogue process-

ing module can perfectly run without any geomet-

ric perception, but its disambiguation routines can

transparently benefit from it when available (since

richer symbolic descriptions of objects are then avail-

able).

This architecture moves away from standard lay-

ered approaches. Interactions between components are

mostly bidirectional and we do not have a concept of

layers of abstraction (we do, however, have access to the

lower level modules of the robot to execute actions, but

all cognition-related modules reside at the same level).

This is especially visible for the dialogue input process-

ing. This component does not simply act as an alter-

native perceptual input to the symbolic database, but

also actively queries previously acquired knowledge to

disambiguate and validate the newly created symbolic

knowledge.

Regarding the anchoring question, this architecture

is bidirectional. The components we described provide

a bottom-up grounding process: SPARK and Dialogs

constantly build and push new symbolic contents about

the world to ORO where it becomes accessible to deci-

sional layers. In parallel, ORO relies on reasoning in a

top-down way to produce new facts that may trigger in

return physical behaviours.

6.2 Discussion

Our system has however shortcomings and opens sev-

eral questions on different topics. In this section, we

discuss some of these limitations, possible extensions,

and how this article contributes to the larger debate on

symbol grounding for embodied agent.

6.2.1 Modeling the Real World

The main challenge we address in this work can be

formulated as How to model real-world interaction in

a symbolic way, processable by the robot to make de-

cisions. In the paper we used several times the term

grounding to describe the process of binding percepts

to symbols (later organized in a first-order logic frame-

work). We would like to relate it to Sloman’s [37] stance

against the “Symbol Grounding meme”, where he ar-

gues that symbolic grounding is bound to the repre-

sentation of somatic concepts (i.e. roughly, the sensori-

motor relationships that the robot learns from its in-

teraction with the world) which in turn severely con-

straints the domain of concepts accessible to the robot.
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We could call this type of grounding bottom-up ground-

ing, and Steels [39] claims it is a solved issue.

For us, grounding is on the contrary a top-down ac-

tivity: the robot needs to automatically bind a repre-

sentation (for instance, a word uttered by a human, an

image taken from a camera, a sentence extracted from

Wikipedia) to an unambiguous, context-dependent, in-

ternal concept. This concept may (or may not) be a

priori available to the robot as a pre-loaded ontology

(what we previously called the cultural background of

the robot).

Note also that perception issues have been solved

in our experiments by using a tag-based object iden-

tification method. In section 4.1 we give an example

where the human says “the yellow banana is big”. It is

assumed in the example that the robot already knows

about a banana instance that is yellow. In our experi-

ments, this kind of knowledge was either hard coded in

scenario-specific ontologies (e.g. 〈banana 01 type Banana〉
where banana 01 is the id of the banana’s tag) or taught

to the robot with prescriptive sentences like “Learn that

this is a banana” while pointing at the banana’s tag. It

would be interesting to extend this approach with auto-

matic classifiers (for colour, size, etc.). If the robot later

discovers a yellowish and large object, an utterance like

“the yellow banana is big” could be used to assert that

this object is a banana. A similar approach focused on

the combination of visual perception and communica-

tion modalities to achieve visual learning has been de-

veloped by [43].

While the examples we develop are all based on sym-

bols that have a physical meaning, the system deals

equally well with abstract, exo-somatic, concepts like

Time, Event or Place. Demonstrating this in real ex-

periments would be an interesting development.

Amongst the other shortcomings of our architecture,

neither the domain of validity nor the context of a fact

are represented in a satisfying way (we do store some

kind of context –the agent’s mental model for instance).

This information is meta-information on the knowledge.

While the ORO framework allows them through state-

ment reification, it does not offer yet a convenient way

to store them. One obvious limitation that derives from

the lack of efficient meta-knowledge is the absence of

knowledge history. With ORO, the robot always lives

in the present.

Along the same lines, our current framework lacks a

proper management of uncertainty which is essential for

real world environments. A probabilistic layer should be

added by attaching truth probabilities to statements,

similar to [17].

6.2.2 On Thematic Roles and Action Models

The current implementation relies on a small, prede-

fined set of action verbs that can be recognized from

natural language (section 4.2). This constraint does not

come from the resolution algorithm itself, but rather

from the difficulty to automatically extract the the-

matic roles associated to a verb. This could be im-

proved by linking a symbolic task planner to the Di-

alogs module to dynamically provide the list of ac-

tions that the robot can process, i.e. actions for which

the robot can produce a plan. Additionally, we could

exploit on-line resources like VerbNet [19], which pro-

vides a large machine-processable lexicon of English

verbs along with their thematic roles.

6.2.3 Knowledge and Embodiment

The three experiments that were presented in the paper

all illustrate how the robot makes use of its embodied

nature to establish a meaningful communication with a

human. Mainly, because the robot and the human share

the same physical environment and they perceive each

other, we are able to create a mutual context.

Sloman, in [38], argues however that the strong fo-

cus on embodiment in the robotics community has hin-

dered progress towards natural human-robot interac-

tion. Our approach has hopefully made clear that, sim-

ilar to Beetz et al. [4], we do not consider embodiment

per se outside of a broader symbolic system, i.e. our

architecture is not bound to the morphology or the low-

level sensori-motor capabilities of a specific agent.

However, we can build a model of the “human point

of view” because the robot perceives the human, and

is able to estimate, at least partially, what the human

perceives or not. We infer that a human focuses on some

object because he/she points at it, looks at it, and be-

sides, the object is visible to him. This relies on the

embodied nature of the interaction. In turn, this allows

us to understand the meaning of sentences like “Give

me that”.

We hope that this contribution shows that consid-

ering embodiment as the most challenging and fruitful

characteristic of robotics in regards to the whole AI

community does not contradict with a formal, highly

symbolic approach of the representation and decision

problems that arise in robotics.

Let us conclude this article briefly reviewing and

linking Roy’s list of challenges for human-robot dia-

logue with our current approach:

– While more modalities (especially, deictic gestures

and social gazes) can be added, we have actually

proposed a cross-modal representation system.
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– One of the main feature of the Dialogs module is

its ability to interactively ground concepts through

disambiguation, bringing the ability for the robot

to associate words with perceptual and action cate-

gories.

– The ORO knowledge base offers some support for

the modeling of context, but a lot remains to be done

in this respect.

– Figuring out the right granularity of models is par-

tially solved by supporting both a geometric rea-

soning level and a purely symbolic level. Generally

speaking, it appears that complex robotic systems

need to operate with a dynamic granularity, depend-

ing on the task to achieve.

– Temporal modeling is currently missing in our ar-

chitecture, and symbolic and geometric planning is

accomplished outside of the knowledge representa-

tion loop we presented here. We see planning as an

essential tool to build predictive knowledge, and we

are looking into this direction.

– Since we provide no time management, our system

is currently not able to match past (learned) expe-

riences with the current interaction. This ability is

obviously a key step for general action recognition,

and seems of particular importance for the robot to

assess the state of the interaction with the human.

– Finally, Roy mentions the ability to take into ac-

count the human perspective: this is probably our

main contribution which we are now trying to de-

velop even further towards psychology-inspired ex-

periments.

7 Downloads

The various software components presented in this pa-

per are all open-source.

– ORO is the stand-alone ontology server. Download

and documentation are on http://oro.openrobots.

org.

– The OpenRobots Common Sense Ontology can be

accessed from http://kb.openrobots.org.

– SPARK is the 3D-based situation assessment mod-

ule. Its homepage is http://spark.openrobots.

org.

– Dialogs is the natural-language interpretation mod-

ule. Its homepage is http://dialogs.openrobots.

org.
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